Космическая технология и производство
Шрифт:
На станции «Салют-5» исследовались особенности роста кристаллов из водных растворов. Главной отличительной чертой подобных экспериментов в космосе является отсутствие конвекции в жидкости, которая приводит к колебаниям скорости роста и состава кристалла. С этой точки зрения качество кристаллов, получаемых в космосе, должно быть более высоким. Но с другой стороны, в космических условиях на пузырьки газа в жидкости не действует сила Архимеда, и эти пузырьки могут захватываться растущими гранями кристалла.
Исследование этих процессов на станции «Салют-5» проводилось с помощью прибора «Кристалл». Он представлял собой термостат с тремя кристаллизаторами, в каждом из которых происходило выращивание кристаллов алюмокалиевых квасцов из их водного раствора (см. рис. 6). Алюмокалиевые квасцы были выбраны в качестве исследуемого материала,
Эксперимент с кристаллизатором № 1 продолжался в течение 24 суток (с 14 июля по 8 августа 1976 г.). Первая экспедиция на станцию «Салют-5» — космонавты Б. В. Волынов и В. М. Жолобов — доставила на Землю кристаллы из этого кристаллизатора, которые выросли не только на «затравке», но и в объеме кристаллизатора (массовая, или объемная, кристаллизация). Эксперимент с кристаллизатором № 2 продолжался 185 суток (с 9 августа 1976 г. по 11 февраля 1977 г.). Большая часть этого эксперимента происходила в то время, когда станция «Салют-5» находилась в беспилотном управляемом режиме. Вторая экспедиция — космонавты В. В. Горбатко и Ю. Н. Глазков — доставила на Землю большое количество кристаллов, полученных при массовой кристаллизации. Было отмечено интересное явление — срастание отдельных кристаллов в цепочки («ожерелья»). Опыт в кристаллизаторе № 3 проводился 11 суток. На Землю был доставлен кристалл, выросший на «затравке», массовая кристаллизация в этом кристаллизаторе отсутствовала (см. рис. 11).
Изучение кристаллов, выросших в кристаллизаторе № 1, показало, что «космические» кристаллы отличаются от выращенных на Земле как по внешней огранке кристаллов (хорошо развиты те грани кристалла, которые обычно слабо развиты в земных образцах), так и во внутренней структуре (космические образцы содержат повышенное количество газово-жидких включений). Исследование кристаллов, полученных при массовой кристаллизации в кристаллизаторе № 2, показало, что и они содержат газово-жидкие включения. Наблюдаются сростки из четырех — пяти отдельных кристалликов. Для кристалла, выросшего в кристаллизаторе № 3, характерно чередование зон, содержащих газовые включения с зонами, чистыми от включений.
Рис. 11. Кристаллы алюмокалиевых квасцов, выращенные на станции «Салют-5» (а — образцы из кристаллизатора № 1; б — из кристаллизатора № 2; в — из кристаллизатора № 3)
Исследования доставленных из космоса кристаллов показали также, что в них не наблюдается полосчатости, характерной для земных условий и свидетельствующей о колебаниях скорости роста. Этот результат может быть следствием отсутствия конвекции в растворе в космических условиях.
Источником газово-жидких включений в кристаллах являются, очевидно, пузырьки газа, растворенного в жидкости и выделяющегося на фронте кристаллизации. Пузырьки газа захватываются растущим кристаллом и вызывают захват жидкого раствора. Используя в последующих экспериментах обезгаженные растворы, можно будет выращивать в космосе кристаллы, не содержащие таких включений. Сростки кристаллов, наблюдавшиеся в кристаллизаторе № 2, в котором процесс кристаллизации продолжался около полугода, видимо, обусловлены взаимным притяжением кристаллов, растущих в объеме жидкости в течение длительного времени.
Особенности роста кристаллов из расплава также исследовались на примере германия также в эксперименте, проведенном во время полета кораблей «Союз» — «Аполлон». Исследуемые образцы размещались в ампулах, которые устанавливались в электронагреаную печь, где германий подвергался частичному плавлению с последующим затвердеванием в режиме программированного охлаждения со скоростью 2,4 град/мин. Для экспериментального определения скорости роста кристалла каждые четыре секунды проводились метки поверхности раздела фаз путем пропускания через расплав коротких импульсов электрического тока. При послеполетной обработке образцов эти метки были выявлены и по ним была измерена скорость роста кристалла, составившая в конце периода охлаждения около 10–3 см/с. В контрольных экспериментах, поставленных на Земле, эта скорость оказалась приблизительно такой же. Этот результат означает, что как в космосе, так и на Земле теплообмен в расплаве определялся для данного случая, главным образом теплопроводностью, а роль конвекции пренебрежимо мала. Кристаллы, полученные в космосе, были значительно крупнее тех, которые удалось вырастить на Земле в такой же установке.
В эксперименте, который был осуществлен также в рамках программы «Союз» — «Аполлон», изучался рост кристаллов из паровой фазы. Кристаллы типа германий — селен — теллур росли в запаянных ампулах, которые устанавливались в зону с перепадом температуры электронагревной печи. Эксперимент показал, что доставленные из космоса кристаллы более совершенны, чем контрольные образцы, полученные на Земле (более высокая однородность, меньше дефектов кристаллической решетки и т. д.). Одновременно было установлено, что вопреки теоретическим ожиданиям скорость переноса массы превышает величину, рассчитанную в чисто диффузионном приближении, но меньше значения, полученного в контрольных экспериментах на Земле, где значительную роль играла конвекция. Этот результат еще требует теоретического объяснения.
Таким образом, выполненные в космосе эксперименты по выращиванию кристаллов из растворов, расплавов и из паровой фазы показали, что в космических условиях можно получить кристаллические материалы, обладающие более высоким совершенством и однородностью. Вместе с тем установлено, что ряд экспериментально наблюдаемых особенностей роста кристаллов в невесомости не получил пока необходимого теоретического освещения и нуждается в дальнейшем исследовании.
Бесконтейнерное затвердевание в невесомости. Процессы формообразования жидких тел и их затвердевания в условиях, когда на них не действует сила веса, имеют свои особенности. Во-первых, предоставленная в этих условиях самой себе жидкость стремится, как известно, принять форму шара. Однако в действительности при затвердевании жидкости возникает ряд эффектов, усложняющих процесс сфероидизации: свободные колебания объема жидкости, различная скорость остывания жидкости на поверхности и в объеме и т. д. Во-вторых, сами процессы затвердевания и кристаллизации такой жидкости в невесомости также могут протекать по-иному. Прежде всего это касается конвекции, которая в земных условиях сглаживает колебания температуры в расплаве и способствует устойчивости процесса кристаллизации. В-третьих, в случае многокомпонентных сплавов отсутствие тяжести может повлиять на перераспределение компонентов внутри жидкости, а тем самым и на однородность образца.
Совокупность этих вопросов исследовалась в экспериментах на станции «Скайлэб», а также в эксперименте с прибором «Сфера» на станции «Салют-5». В первом из этих экспериментов заготовки из чистого никеля или его сплавов плавились под действием электронного пучка, а затем охлаждались, свободно плавая в вакуумной камере на борту станции «Скайлэб». Наземные исследования полученных образцов показали, что отклонение их формы от сферической составляет около 1 %, а образцы, приготовленные из сплавов, содержат внутренние поры. Цель другого эксперимента состояла в получении в невесомости материалов с однородной пористостью путем переплава серебряных сеток. Таких материалов американским ученым получить не удалось, зато при переплавке в ампулах тонких серебряных сеток наблюдалась сфероидизация жидких капель серебра. Наземные исследования той части затвердевших капель, которые не имели при остывании контактов со стенками ампулы, показали, что их форма далека от совершенства. Поверхность образцов покрыта сеткой желобков, а в их объеме имеются усадочные раковины [5] . Внутренняя структура образцов носила ячеистый характер. Можно предполагать, что именно ячеистое затвердевание и образование раковин помешали образованию более правильных сфер в условиях, близких к невесомости.
5
Усадочные раковины — пустоты, образующиеся внутри или на поверхности слитка при переходе металла из жидкого состояния в твердое.