Чтение онлайн

на главную - закладки

Жанры

Коснуться невидимого, услышать неслышимое
Шрифт:

В физиологии и медицине действие ультразвука изучалось, как правило, с точки зрения вызываемых им разрушений или лечебно-терапевтических влияний. Лишь в 60-е годы П. О. Макаров, Б. М. Сагалович и некоторые другие исследователи начали применять ультразвук для получения функциональных эффектов. Заметим сразу, что мы не касаемся обширной области «ультразвуковой визуализации органов и тканей», которая уже давно выделилась в самостоятельное научно-техническое направление. Толчком к расширению исследований «функциональных возможностей» фокусированного ультразвука явились представления В. А. Цукермана, сформулированные в 1969 г. Он считал перспективными попытки активировать нейроны головного мозга в заданной области сходящимися ультразвуковыми волнами, что исключило бы необходимость оперативного вмешательства для доступа к нужной структуре и использования контактных электродов.

Появившееся в начале 70-х годов содружество представителей нескольких учреждений — лабораторий, возглавлявшихся членом-корреспондентом АН СССР Г. В. Гершуни, доктором биологических наук О.

Б. Ильинским, доктором физико-математических наук М. Г. Сиротюком, положило начало исследованиям функционального действия фокусированного ультразвука на поверхностные и глубокие структуры организма человека и животных.

Первоначально возникла простая на первый взгляд мысль: искать активирующее действие ультразвука прежде всего на рецепторном уровне сенсорных систем, как наиболее чувствительном к действию внешних стимулов. Были получены первые результаты, которые показали возможность раздражения системы кожной чувствительности импульсами фокусированного ультразвука. И вся гамма ощущений, которые в естественных условиях хорошо знакомы каждому — от легкого прикосновения, щекотки, тепла или холода до боли, — возникала при изменении параметров ультразвука. Эти ощущения были описаны, изучены, количественно охарактеризованы. Техникотеоретические исследования доктора технических наук Л. Р. Гаврилова и результаты изучения кожной чувствительности позволили расширить область применения фокусированного ультразвука и выяснить в дальнейшем возможность введения слуховой информации при фокусировке ультразвука на лабиринт. Исследования, проведенные с участием специалистов клинико-физиологического направления, дали возможность обосновать различные способы диагностики заболеваний слуха и кожной чувствительности. Экспериментальные физиологические исследования расширили представления об общих и специфических закономерностях в деятельности органов чувств и позволили обосновать безопасные режимы воздействия фокусированным ультразвуком на различные рецепторные воспринимающие поверхности.

В настоящее время еще недостаточно изучены механизмы активирующего действия ультразвука; необходимо изучить метрологическое обеспечение исследований, без которого невозможно, например, массовое применение ультразвуковых методик в клинике. Нет пока общепринятой стратегии выделения действующих факторов ультразвукового стимула, обеспечивающих тот или иной функциональный эффект в конкретных случаях.

Исследования морфо-физиологов до сих пор — «первая лыжня» на сложном пути обоснования критериев действия ультразвука, его специфических особенностей с точки зрения реакции биологических систем, безопасности его воздействия. Ультразвук не только активирует, но и разрушает. Пусть велик диапазон между раздражающими и разрушающими режимами, но все же нужно помнить первую заповедь медика: не вреди. Для того чтобы ультразвук мог быстро и основательно стать на службу здоровья, необходимо участие врачей-исследователей, специалистов в области клинической физиологии сенсорных систем.

Сейчас фокусированный ультразвук используется в физиологии и разных областях медицины. В ряде случаев, однако, имеется только «введение», последующие «главы» нужно создавать. Отечественные работы по изучению и практическому использованию активирующего действия фокусированного ультразвука носят приоритетный характер, а это дополнительный аргумент для их усиления: важно, чтобы новая область развивалась и укреплялась.

Некоторые общие сведения об ультразвуке

Понятие «ультразвук» относится к волновому механическому колебательному процессу частотой от 2·104 до 109 Гц. Когда частота превышает 109, до 1013, Гц, говорят о гиперзвуке. Выделение ультразвука как самостоятельного понятия исторически связано со слухом человека. Если частота механических колебаний, распространяющихся по воздуху, выше воспринимаемой человеком, говорят об ультразвуке или, в зависимости от частоты, о гиперзвуке; если ниже — об инфразвуке. По физической природе инфразвук, ультра- и гиперзвук не отличаются друг от друга. Отличия возникают преимущественно при взаимодействии каждого из перечисленных колебательных процессов со средой. Например, из-за очень малых длин волн гиперзвука существенным становится взаимодействие его с квазичастицами среды — электронами, фотонами и другими.

Удивительная способность некоторых животных ориентироваться в пространстве, избегать препятствий в темноте всегда привлекала внимание и побуждала к выяснению ее причин. Итальянский ученый Л. Спалланцани в 1793 г. опубликовал сведения, согласно которым эта способность связана со слухом, а не со зрением, как предполагали раньше. Через 5 лет швейцарский энтомолог Ш. Жюрин привел данные, свидетельствующие о том, что именно слух летучих мышей позволяет им обнаруживать препятствия. Однако эти исследования не помешали французскому зоологу Ю. Кювье выдвинуть гипотезу, по которой способности к ориентации летучих мышей в темноте определяются очень развитой у них системой осязания. В дальнейшем английский ученый X. Хартридж вновь привлек внимание к возможности локализации этими животными колебаний высокой частоты, не воспринимаемых человеком. И лишь в 1938 г. Д. Гриффин — известный в дальнейшем американский специалист по ориентации с помощью эхолокации, а тогда студент — обнаружил высокочастотные сигналы, издаваемые летучими мышами. Исследования его и других ученых подтвердили

ранние представления об ультразвуковой ориентации летучих мышей. К настоящему времени доказано, что многие животные издают и воспринимают ультразвуковые колебания: ночные птицы, например гуахара, млекопитающие, в частности некоторые из землероек, крысы, мыши. Спектр «звуков», издаваемых домашней кошкой, простирается до 60 кГц, то же самое характерно и для собак некоторых пород. Новые исследования постоянно увеличивают список животных, в сигналах которых присутствуют ультразвуковые составляющие. Наиболее детально изучены подобные сигналы у летучих мышей и дельфинов.

В повседневной жизни человек соприкасается с множеством источников ультразвуковых колебаний, природных или создаваемых им самим. Ультразвуки содержатся в шумах ветра и моря, издаются животными и даже самим человеком, присутствуют во время работы различных механизмов. В большинстве случаев они не воспринимаются человеком.

Ультразвук широко применяют в разных областях науки, техники, медицине. Специфические его особенности обусловлены, в частности, длиной волны, которая может быть короче диаметра излучающей поверхности, благодаря чему ультразвук способен распространяться направленно. Подобно свету его можно сфокусировать на ограниченном участке. В технике ультразвук получают преимущественно механическим и электроакустическим способами. В механических преобразователях кинетическая энергия, например струи воздуха, переходит в акустическую (принципы сирены, свистка). Другие принципы использованы в пьезоэлектрических и магнитострикционных преобразователях, которые значительно более распространены, чем механические. В пьезоэлектрических преобразователях использован эффект, обнаруженный в 1880 г. Жаком и Пьером Кюри. При деформации пластины кварца возникают электрические заряды. Электричество, возникающее при давлении, было названо «пьезоэлектричеством» («пьезо» — по-гречески «давить»). Но может быть и противоположный эффект: под действием электричества кварцевая пластинка меняет свои размеры. Если на пластинку подается переменное электрическое напряжение с частотой, равной ее собственной резонансной частоте, пластинка начинает колебаться с наибольшей амплитудой.

Принцип действия магнитострикционных преобразователей основан на изменении размеров ферромагнитного материала при действии на него магнитного поля («стрикцио» — по-латыни значит «сжатие»).

В наших исследованиях использовались излучатели с пьезокерамическими пластинками, работающими по типу кварцевых. Интересно отметить, что в природе имеются достаточно компактно «выполненные» фокусирующие системы, например у дельфинов. У них существует жировая линза, расположенная кпереди от источника ультразвука, которая формирует направленное ультразвуковое излучение.

Фокусирование ультразвука

Концентрация ультразвуковой энергии может быть достигнута разными способами, например с помощью линз, аналогично фокусировке света; путем направления нескольких ультразвуковых пучков в одну область одновременно или последовательно — перемещением одного излучателя под разными углами к заданной области, наподобие того, как направляются рентгеновские лучи при томографии.

В последние годы часто применяются фокусирующие преобразователи (излучатели ультразвука), выполненные на основе пьезокерамики и представляющие собой по форме часть сферы. Частота излучаемого ультразвука равна собственной резонансной частоте пьезокерамической пластинки. Когда на пластинку подают переменный ток резонансной частоты, то она колеблется в поперечном направлении, преобразуя электрический ток в механические колебания — ультразвук. Наибольшая концентрация ультразвуковой энергии достигается в центре кривизны излучателя, на расстоянии от пластинки, равном радиусу кривизны. Место наибольшей концентрации энергии принято называть фокальной областью. Размеры фокальной области излучателя зависят от частоты резонансных колебаний пьезокерамической пластинки и некоторых его конструктивных особенностей, в частности от так называемого угла раскрытия (рис. 14). Чем выше частота и больше угол раскрытия излучателя, тем меньше размеры фокальной области. Интенсивность ультразвука зависит от свойств пьезокерамической пластинки и мощности генератора, подающего на пластинку переменный ток.

Рис. 14. Геометрические характеристики сферического излучателя ультразвука.

R — радиус излучателя, F — фокусное расстояние, h — глубина, m — угол раскрытия, r0 и l — соответственно поперечный радиус и продольная длина фокальной области.

Приборы, имевшиеся в нашем распоряжении, обеспечивали интенсивность ультразвука, осредненную по площади наибольшего поперечного сечения фокальной области, от долей до нескольких тысяч Вт/см2. Как правило, каждый излучатель питался от генератора, настроенного на резонансную частоту пьезокерамической пластинки. Кроме того, имелись генераторы с несколькими излучателями. Перестройка на нужный излучатель достигалась сменой отдельных блоков и дополнительной подстройкой резонансного контура. Например, одним генератором можно было осуществлять работу на трех излучателях с резонансными частотами 0.48, 0.887 и 2.67 МГц.

Поделиться:
Популярные книги

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Адепт. Том второй. Каникулы

Бубела Олег Николаевич
7. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.05
рейтинг книги
Адепт. Том второй. Каникулы

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

Афганский рубеж

Дорин Михаил
1. Рубеж
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Афганский рубеж

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка

Последний попаданец 9

Зубов Константин
9. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 9

Авиатор: назад в СССР 12

Дорин Михаил
12. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 12

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Возвышение Меркурия. Книга 15

Кронос Александр
15. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 15

Чехов. Книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
альтернативная история
5.00
рейтинг книги
Чехов. Книга 3