Чтение онлайн

на главную

Жанры

Коснуться невидимого, услышать неслышимое
Шрифт:

Изучение болевых порогов при направлении фокальной области ультразвукового излучателя на кожу и в подкожные ткани выявило новые факты: как правило, пороги ощущений боли, как и тактильные, возрастают по направлению от пальцев к предплечью, но в некоторых чувствительных точках предплечья пороги боли оказываются равными порогам на пальцах и ладони.

Наиболее непротиворечивая современная гипотеза болевой рецепции предполагает, что в области рецепторной структуры под действием различных внешних или внутренних агентов появляется (образуется на месте воздействия или переносится из других областей) биологически активное вещество. Возникновению ощущения боли предшествует взаимодействие этого алгезирующего, т. е. вызывающего боль, вещества с рецепторной структурой. На роль такого вещества имеется несколько кандидатов. Не исключено, что и реально существует несколько таких веществ. Наши исследования косвенно подтверждают эту химическую гипотезу. На образование

или перенос алгезирующих веществ необходимо некоторое время, большее чем для непосредственной активации стимулом рецепторной структуры, как это имеет место, например, при тактильных ощущениях. Действительно, скрытое время реакции, т. е. время от момента предъявления стимула до появления ощущения боли, значительно больше, чем до появления тактильных ощущений. Разницу во времени прекрасно улавливают сами обследуемые: уже указывалось, что имеются чувствительные точки, в которых последовательно ощущаются прикосновение, появление тепла или холода и, наконец, после температурного ощущения или на его фоне — боль.

Данные о существовании смешанных чувствительных точек и чисто болевых в сочетании с описанными закономерностями в распределении болевых порогов на руке позволяют присоединиться к точке зрения о существовании специфической и неспецифической болевой рецепции. Неспецифическая имеет место в том случае, когда тактильные или температурные рецепторные структуры раздражаются сверхсильно. Поэтому, вероятно, боль в температурных чувствительных точках часто обладает жгучим характером, а тактильное ощущение в точках на коже при усилении стимуляции может перейти в острую колющую боль, напоминающую боль при уколе тонкой швейной иглы.

Тактильные ощущения связывают с наиболее толстыми миелинизированными (покрытыми миелиновой оболочкой) волокнами, температурные — с миелинизированными волокнами меньшей толщины. Чем тоньше осевой цилиндр волокна и тоньше миелиновая оболочка, тем медленнее оно проводит раздражение. При действии ультразвука на чувствительные точки, когда с увеличением интенсивности стимуляции имевшееся ранее тактильное или температурное ощущение сменяется болью, очевидно, функционируют более толстые волокна, в том случае, когда возникает ощущение боли с порогом ниже, без сопутствующих других ощущений, включаются тонкие волокна. Эти рассуждения согласуются с данными литературы о двух типах болевой рецепции: специфической, связанной с тонкими волокнами, и неспецифической, — с более толстыми.

Вибрация

Ощущение света связано со зрением, ощущение звука — со слухом. Имеется ли специфическое ощущение для вибрации? Для зрения и слуха существуют соответствующие органы чувств со специализированным рецепторным аппаратом. Для восприятия вибрации специализированного рецепторного аппарата не найдено.

С точки зрения физики вибрация и звук представляют собой механические колебания. Частота звуковых колебаний определяется возможностями слухового восприятия человека, приблизительно от 20 Гц до 20 кГц. А частота вибрации? Одно время считалось, что ощущение вибрации связано с так называемой костно-тканевой проводимостью механических колебаний к рецепторам органа слуха.

Человеческое ухо настроено на восприятие механических колебаний воздушной среды. Про вибрацию говорят в тех случаях, когда источник колебаний соприкасается непосредственно с телом человека или колебания достигают тела через какую-либо, обычно твердую, среду. Однако, если, например, ножку звучащего камертона приставить к голове человека, слышен звук. В чем же разница между слухом и ощущением вибрации, да и есть ли вообще такое особое ощущение? Ведь некоторые ученые отождествляли его со слухом. Другие считали, что костнотканевая проводимость «работает» главным образом на голове, а если механические колебания приложены к телу, в их восприятии принимает участие аппарат тактильной рецепции. Были приверженцы существования особой костно-вибрационной чувствительности со своим рецепторным аппаратом. Наконец, еще одна точка зрения: ощущение вибрации есть элементарная форма чувствительности, свойственная любой ткани. В последние годы большинство ученых связывает ощущение вибрации с аппаратом тактильной рецепции. Исследования, выполненные с использованием фокусированного ультразвука, позволили поддержать эту точку зрения.

Прежде всего установлено, что с помощью ультразвука можно вызывать точно такие же ощущения, как при действии вибратора. На кожу пальца воздействовали ультразвуковыми стимулами длительностью около 1 мс с разной частотой их следования, а также фокусированным ультразвуком, модулированным по амплитуде синусоидальными колебаниями разных частот. Ультразвук в эксперименте выгодно отличается от вибратора тем, что практически полностью может быть исключено акустическое переслушивание по воздуху. Сравнение ультразвуковой стимуляции с действием вибратора показало, что в обоих случаях можно вызвать однотипное специфическое ощущение. Испытуемые называли его сверлящим, жужжащим, сравнивали с ощущением при движении

на коже сверла или буравчика. Ощущение возникало при частоте следования ультразвуковых импульсов или частоте амплитудной модуляции от 15—40 до приблизительно 700 Гц. Частота колебаний вибратора была примерно в том же диапазоне. Характерно также, что при всех этих способах стимуляции человек не может различить изменения частоты воздействия. В то же время пороги ощущения для разной частоты различаются. Наибольшая чувствительность — т. е. наименьшие пороги — отмечена при частоте около 250 Гц как в случае ультразвука (частота модуляции, частота следования стимулов), так и при стимуляции вибратором (рис. 18). Пороги ощущения вибрации значительно выше слуховых порогов. Поэтому вполне естественно, что при подаче механических колебаний на голову с увеличением интенсивности стимуляции прежде всего появляется слуховое ощущение. Частотный диапазон его значительно шире, появляется частотное различение, а наибольшая чувствительность выражена к частоте колебаний 1000 Гц и более. Это типичные результаты, связанные с так называемой костной проводимостью.

Как уже было отмечено, выполненные исследования согласуются с данными литературы. Таким образом, есть все основания утверждать, что имеются существенные отличия ощущения вибрации от слуха. Ощущение вибрации не сопровождается какими-либо температурными или болевыми ощущениями, поэтому остается предположить связь ощущений вибрации лишь с тактильной рецепцией. Наиболее вероятно, что для ощущения вибрации нет специализированного рецепторного аппарата. Частота механических колебаний, вызывающих ощущение вибрации, с учетом данных, полученных с помощью фокусированного ультразвука и сведений литературы, — от 15—40 до 700—1000 Гц. Хотя эмпирически люди понимают, что такое вибрация, научного ее определения до последнего времени не было. Попытаемся его сформулировать.

Рис. 18. Ощущения вибрации, вызванные фокусированным ультразвуком.

По оси абсцисс на А — частота амплитудной модуляции ультразвука, Гц, на Б — частота колебания вибратора, Гц; по оси ординат на А — интенсивность ультразвука, осредненная по площади фокальной области, Вт/см2, на Б — величина порога ощущения, дБ от уровня для частоты 250 Гц. Светлые и черные кружки — пороги для двух испытуемых.

Вибрацией называют механические колебания частотой в полосе от 15—40 до 700—1000 Гц, вызывающие у человека специфическое ощущение, для которого характерны минимальные пороги на частоте колебаний около 250 Гц и отсутствие частотного различения при равной надпороговой интенсивности воздействия.

Слух

Слуховой рецепторный аппарат относят к механорецепторам. Это значит, что он активируется механическими стимулами. Ультразвук, как уже известно, может активировать механорецепторы, например тактильные или температурные. (Напомним, что изучение температурной рецепции с помощью ультразвука позволило рассматривать ее как разновидность механорецепции). Поэтому вполне естественно пришла мысль сфокусировать ультразвук на улитку человека.

Но как «подобраться» к улитке, расположенной глубоко в височной кости, откуда фокусировать ультразвук на улитковый лабиринт, в котором расположены рецепторы? Направить ультразвук через ухо, естественным путем, нереально. В наружном слуховом проходе, в полостях среднего уха и сосцевидного отростка содержится воздух. Затухание ультразвука в воздухе очень велико, потребуется значительное увеличение интенсивности, а это невыгодно по целому ряду соображений. И главное — это может быть опасно: вспомним, что фокусированный ультразвук большой интенсивности начали использовать прежде всего для разрушений. Направить ультразвук в лабиринт через теменную или затылочную области мешают волосы — они задерживают ультразвуковую энергию, переводят ее в тепло, ненужное в данном случае. Фокусировать ультразвук через лоб могут помешать заполненные воздухом лобные пазухи. По размерам они очень отличаются у разных людей. Наиболее выгодной для фокусирования оказалась область, расположенная кверху и кпереди от основания ушного козелка. В глубине от поверхности кожи в этой области, на 30—40 мм, расположен улитковый лабиринт. Височная кость, в которой он находится, — одна из самых сложно устроенных костей черепа, со множеством изгибов, выступов и впадин. Поэтому сфокусировать ультразвук на слуховые рецепторы далеко не так просто, как в воде или другой однородной среде. Чтобы максимально точно направить ультразвук к так называемой пирамиде височной кости, в которой расположен улитковый лабиринт со слуховыми рецепторами, пришлось разработать и изготовить специальную координатную систему, использовать новые методические приемы.

Поделиться:
Популярные книги

На распутье

Кронос Александр
2. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На распутье

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Гром над Академией Часть 3

Машуков Тимур
4. Гром над миром
Фантастика:
фэнтези
5.25
рейтинг книги
Гром над Академией Часть 3

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Проданная невеста

Wolf Lita
Любовные романы:
любовно-фантастические романы
5.80
рейтинг книги
Проданная невеста

Лорд Системы

Токсик Саша
1. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
4.00
рейтинг книги
Лорд Системы

Вторая жизнь майора. Цикл

Сухинин Владимир Александрович
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Вторая жизнь майора. Цикл

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Имя нам Легион. Том 4

Дорничев Дмитрий
4. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 4

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Наследница Драконов

Суббота Светлана
2. Наследница Драконов
Любовные романы:
современные любовные романы
любовно-фантастические романы
6.81
рейтинг книги
Наследница Драконов

Вечный. Книга III

Рокотов Алексей
3. Вечный
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга III

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии