Чтение онлайн

на главную

Жанры

Курс теоретической астрофизики
Шрифт:

5. Магнитные поля звёзд.

Изучение магнитных полей звёзд основывается на эффекте Зеемана, состоящем, как известно, в расщеплении спектральных линий в магнитном поле. В простейшем случае одиночная линия расщепляется в магнитном поле на три компоненты, одна из которых занимает несмещённое положение, а две другие смещены на одинаковое расстояние по обе стороны от неё. При этом величина смещения пропорциональна напряжённости поля H. Все компоненты линии поляризованы, причём характер поляризации зависит от угла между направлением поля и лучом зрения. В более сложных случаях происходит расщепление линии на большее число компонент.

Линии

поглощения в звёздных спектрах обычно сильно расширены вследствие ряда причин (тепловое движение атомов, эффект Штарка, турбулентность, вращение звезды). Поэтому даже при очень большой напряжённости магнитного поля зеемановские компоненты линий сливаются между собой. Чтобы обнаружить магнитное поле, необходимо применение специальной методики, основанной на использовании анализаторов поляризованного света. При помощи таких анализаторов удаётся в какой-то мере отделить друг от друга зеемановские компоненты линий и по их смещению определить напряжённость поля.

Впервые магнитное поле было открыто Бэбкоком в 1947 г. у звезды 78 Девы, принадлежащей к спектральному классу A2p. Бэбкок предполагал, что сильное магнитное поле связано с быстрым вращением звезды. Однако обнаружить эффект Зеемана по линиям, расширенным вращением, очень трудно. Поэтому для наблюдений была выбрана звезда класса A с узкими спектральными линиями, относительно которой можно было думать, что она, как и другие звёзды этого класса A, вращается очень быстро, но видна нам со стороны полюса. В последующие годы Бэбкок продолжал свои наблюдения и его каталог (см. [9]) содержит сведения о 89 «магнитных звёздах».

Рассмотрение упомянутого каталога приводит к ряду выводов.

1. Напряжённость магнитного поля на поверхности звёзд оказывается порядка 1000 Э. Однако такие значения H, по-видимому, гораздо больше среднего значения, так как измерить напряжённости поля, не превосходящие 200 Э, при принятой методике нельзя.

2. Большинство звёзд каталога (70 из 89) принадлежит к спектральному классу A (точнее, к интервалу B8—F0). Однако в значительной мере здесь сказывается наблюдательная селекция вследствие преимущественного отбора звёзд, подобных звезде 78 Девы.

3. Почти все магнитные звёзды обладают «пекулярными» спектрами, в которых некоторые линии ослаблены, а другие усилены по сравнению с обычными спектрами.

4. Магнитные поля всех изученных звёзд являются переменными. При этом в некоторых случаях поля меняются периодически, в большинстве же случаев — иррегулярно.

Дальнейшими исследованиями установлено, что магнитные звёзды представляют собой особую группу звёзд класса A. Они не являются звёздами, видимыми с полюса, а вращаются медленнее других звёзд. Для объяснения магнитных и спектральных изменений этих звёзд предложена модель наклонного ротатора, т.е. звёзды, ось вращения которой наклонена под некоторым углом к магнитной оси. В таком случае вместе с вращением звезды перемещаются относительно наблюдателя и магнитные полюсы.

Важной особенностью магнитных звёзд являются аномалии в их химическом составе. Такой вывод делается на основании аномалий интенсивностей линий поглощения. Поскольку интенсивности линий меняются с течением времени (т.е. с вращением звезды), то считается, что химические элементы неравномерно распределены по поверхности звезды. По-видимому, эта неравномерность относится лишь к поверхностным слоям и она вызывается влиянием магнитного поля, которое может иметь довольно сложную структуру.

Магнитные поля по наблюдаемому эффекту Зеемана были обнаружены

также у других звёзд. Например, поля с напряжённостью порядка 1000 Э измерены у некоторых красных гигантов. Наблюдаемая круговая поляризация света белых карликов дала основание предполагать, что они обладают полями с напряжённостью порядка 10 Э.

Для решения различных проблем звёздного магнетизма должна применяться теория образования линий поглощения в магнитном поле. Эта теория необходима также для изучения магнитных полей солнечных пятен (см. § 15).

§ 14. Звёзды разных спектральных классов

1. Зависимость спектра от температуры.

До сих пор мы занимались вопросом о том, как образуется спектр одной какой-либо звезды. Теперь коротко остановимся на рассмотрении всей совокупности звёздных спектров.

Как известно, в первом приближении звёздные спектры образуют линейную последовательность. Все свойства спектра (например, эквивалентные ширины линий) меняются плавно вдоль последовательности. Объясняется это тем, что спектр звезды зависит в основном от одного параметра — от температуры. С изменением температуры изменяется степень возбуждения и ионизации атомов в атмосфере звезды, вследствие чего изменяются и интенсивности линий.

На практике все звёздные спектры разделяются на ряд классов. Расположенные в порядке убывания температуры, эти классы таковы: O-B-A-F-G-K-M. В конце спектральная последовательность разветвляется: наряду со спектрами класса M (с полосами окиси титана) выделяются спектры классов R-N (с полосами углерода и циана) и спектры класса S (с полосами окиси циркония). По-видимому, это разветвление вызвано различием в химическом составе звёзд.

Проследим за изменением спектра с увеличением температуры звезды. В спектрах наиболее холодных звёзд (класс M и др.) присутствуют молекулярные полосы и линии нейтральных атомов металлов. С возрастанием температуры молекулы диссоциируют, вследствие чего молекулярные полосы пропадают (класс K). В дальнейшем металлы постепенно ионизуются. Очень сложные спектры класса G содержат огромное число линий нейтральных и ионизованных металлов. При последующем увеличении температуры увеличивается интенсивность линий ионизованных металлов (класс F). В классе A наибольшей интенсивности достигают линии бальмеровской серии водорода. В классе B появляются линии гелия (так как для возбуждения линий гелия, лежащих в видимой части спектра, нужна достаточно высокая температура). Наконец, в классе O становятся интенсивными линии ионизованного гелия.

Можно также проследить за изменением интенсивностей отдельных линий с увеличением температуры звезды. Возьмём для примера линии, возникающие при переходе электронов из возбуждённого состояния нейтрального атома. При низких температурах эти линии очень слабы, так как большинство атомов находится в основном состоянии. При увеличении температуры растёт степень возбуждения атомов, что влечёт за собой возрастание эквивалентных ширин рассматриваемых линий. Однако увеличение числа атомов в возбуждённом состоянии продолжается только до определённой температуры. При дальнейшем возрастании температуры число атомов в возбуждённом состоянии уменьшается вследствие перехода атомов в ионизованное состояние. Поэтому уменьшаются и эквивалентные ширины рассматриваемых линий. Таким образом, при увеличении температуры звезды эквивалентные ширины линий, возникающих при переходе электронов из возбуждённого состояния нейтрального атома, сначала растут, а затем убывают.

Поделиться:
Популярные книги

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Партиец

Семин Никита
2. Переломный век
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Партиец

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Бестужев. Служба Государевой Безопасности

Измайлов Сергей
1. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности

Хозяйка брачного агентства или Попаданка в поисках любви

Максонова Мария
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка брачного агентства или Попаданка в поисках любви

Возрождение Феникса. Том 1

Володин Григорий Григорьевич
1. Возрождение Феникса
Фантастика:
фэнтези
попаданцы
альтернативная история
6.79
рейтинг книги
Возрождение Феникса. Том 1

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

Книга пяти колец. Том 3

Зайцев Константин
3. Книга пяти колец
Фантастика:
фэнтези
попаданцы
аниме
5.75
рейтинг книги
Книга пяти колец. Том 3

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Идеальный мир для Социопата 6

Сапфир Олег
6. Социопат
Фантастика:
боевая фантастика
рпг
6.38
рейтинг книги
Идеальный мир для Социопата 6

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX