Чтение онлайн

на главную

Жанры

Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи
Шрифт:

Таким образом, мы видим, что Льюис признает наличие в атоме положительно заряженного ядра. Но заряд ядра у него численно равен номеру группы Периодической системы элементов Д. И. Менделеева, где находится рассматриваемый элемент, а не порядковому номеру последнего. Поэтому и число электронов в каждом периоде изменяется, согласно Льюису, от нуля до восьми. Кроме того, в пояснениях к приведенным постулатам он указывает, что первый из них "имеет дело с двумя частями атома, которые в общих чертах соответствуют внутренним и внешним кольцам атома Томсона" [59, с. 768]. Все это говорит о том, что четкого выбора между двумя моделями атома (резерфордовской и томсоновской) Льюисом сделано не было. Смысл, вкладываемый им в термин "ядро" (kernel), не тождествен тому смыслу, который придавали ему Резерфорд, Бор и их единомышленники, но очень близок к понятию "внутренняя часть атома", которое использовал Томсон при обсуждении своей модели. Это хорошо видно из заключительных фраз статьи Льюиса: "Основная трудность в изучении этих элементов [1]

с помощью настоящей теории связана, как я полагаю, с тем фактом, что понятие ядра атома не является однозначно и твердо определенным. Вполне вероятно, что в этих элементах может происходить перенос электронов из одной части ядра в другую или между ядром и внешней оболочкой, или, возможно, между двумя отдельными внешними оболочками одного и того же атома..." [59, с. 785].

1

Со, Мn и др.- Прим. авт.

Рассмотрим теперь третий постулат. Он включает два предположения: 1) "Атом имеет тенденцию содержать четное число электронов в оболочке" и 2) восемь электронов "располагаются симметрично в восьми углах куба" [59, с. 768].

Льюис поясняет первую мысль следующими примерами: литий имеет один электрон (на поверхности атома), фтор — семь, следовательно, электронейтральная молекула фтористого лития может быть представлена в виде LiFEs, где Е — символ электрона. Аналогично для сульфата лития можно написать Li24E32, для аммиака NHeEs, Для нитрата натрия NaNО3E24 и т. п. Отсюда Льюис приходит к выводу, что "...если атом имеет высшую (или низшую) степень окисления (polar number), то Е будет кратно восьми. В соединениях, в которых атомы имеют промежуточные степени окисления, число электронов не обязательно кратно восьми, но почти всегда четное" [59, с. 770]. Например: SО2 = SО2E18, NaOCl = NaOClE14 и т. п.

Те соединения, у которых Е — нечетное, "обладают высокой активностью и имеют тенденцию переходить в соединения с четным числом электронов" [59, с. 770]. Например: NО = NOE11, NО2 = NО2E17 и т. п.

Теперь остановимся на второй части третьего постулата — идее расположения атомных электронов в углах куба. Льюис писал: "Главным соображением для принятия кубической структуры было то, что она является наиболее симметричным расположением восьми электронов, и в ней электроны наиболее удалены" [59, с. 779-780]. Иными словами, Льюис указывает на две разнородные причины принятия им кубической модели атома: соображения симметрии, которые выступают в данном случае как своеобразный эстетический принцип, и требование минимального отталкивания электронов. Однако попытки распространения кубической модели на ненасыщенные углеводороды показали, что, опираясь на эту модель, "невозможно не только представить тройную связь, но также объяснить явление свободного вращения относительно простой связи" [59, с. 780]. Это обстоятельство заставило Льюиса изменить свои первоначальные идеи, сохранив, однако, их "рациональное зерно". В поиске новых концепций ученый обращается к началу периодической системы: "...для элементов с меньшим атомным весом, чем литий, устойчивую группу образует пара электронов — появляется вопрос, нельзя ли вообще рассматривать за основную единицу (связи.- И. Д.) пару электронов, а не октет" [59, с. 779]. В дальнейшем, как известно, концепция электронной пары получила значительное развитие.

В литературе, посвященной истории структурной химии, можно встретить мнение о том, что доквантовые электронные теории "представляли собой попытку интерпретировать простую межатомную связь как жесткий элемент структуры, обусловленный целочисленностью валентных электронов и, по существу, исключивший вариации в энергиях связей" [16, с. 94].

Однако анализ работы Льюиса показывает, что это не совсем так. Обратимся, например, к пятому постулату: "Электроны могут с легкостью переходить из одного положения в наружной оболочке к другому, они удерживаются в своем положении более или менее напряженными (constraints) связями, и эти положения, а также прочность связей определяются природой данного атома и тех атомов, которые соединены с ним" [59, с. 768]. Эта мысль конкретизируется в другом месте статьи Льюиса, где он рассматривает гомоатомные молекулы галогенов: "электроны, которые осуществляют связь между двумя атомами йода, удерживаются более слабыми силами, чем в случае брома и т. д., во всей группе [59, с. 784]. Кроме того, для гетероатомных полярных молекул взаимное влияние атомов обусловлено по Льюису различным по величине притяжением электронной пары, осуществляющей химическую связь, к разным атомам, что выражается в различной полярности соединений. Рассматривая молекулу Н2СlС-СООН, Льюис говорит о постепенном ослаблении "разделения электронов между атомами при удалении от атома хлора" [59, с. 782]. С помощью идей Льюиса многие американские и английские химики разработали в 20-х годах электронные модели взаимного влияния атомов. Так, например, в 1923 г. ученики Льюиса Латимер и Родебуш исследовали способность электроотрицательного атома изменять свойства соседних функциональных групп.

Как сказано в работе [16], рациональный химический динамизм связан не с механическим взглядом на атомы и молекулы, а с появлением представлений о неравноценности сил и энергий химической связи и вообще химического взаимодействия, в том числе взаимного влияния атомов [16, с. 93]. Поэтому нужно отметить, что теория Льюиса вовсе не исключает указанные идеи, и когда мы говорили о ней как о статической теории, это не следует понимать буквально — она статична по сравнению с теорией Н. Бора, но не в смысле "рационального химического динамизма".

С квантовохимической точки зрения понятно, почему гипотеза о статическом атоме (при отсутствии в нем орбитального движения электронов) в совокупности с предположением о взаимной проницаемости атомных оболочек (четвертый постулат) дала возможность качественно рассмотреть ковалентную связь. Действительно, согласно теореме Гельмана-Фейнмана, распределение электронной плотности в молекуле, определяемое одночастичной матрицей плотности , таково, что силы, действующие на ядра, могут быть рассчитаны по законам классической электростатики суммированием вкладов от каждого элемента статического объемного заряда, "размазанного" в пространстве с плотностью . Это обусловило впоследствии успех многих квантовохимических методов, особенно тех из них, в которых развивается квазиклассический подход к определению типа ядерного полиэдра молекулы, например модель Сиджвика и Пауэлла, развитая затем Гиллеспи и Найхолмом (подробнее см. [9]).

В 20-х годах была дана качественная трактовка реакций присоединения к насыщенным молекулам, структуры ряда комплексных соединений, а также в первом приближении объяснена природа водородной связи. Это удалось сделать с помощью выдвинутой Льюисом и развитой впоследствии Сиджвиком [78, 79] концепции неподеленной (свободной) электронной пары, способной образовывать химические связи.

Значение появления этой концепции трудно переоценить. Если в конце XIX — начале XX вв. для объяснения существования многих комплексных соединений и протекания реакций присоединения к насыщенным молекулам приходилось прибегать к искусственным представлениям о "дополнительных" (скрытых, побочных) валентностях, то с появлением модели Льюиса и концепции неподеленных электронных пар необходимость в подобных построениях отпала. По словам Сиджвика: "обе ветви химии — органическая и неорганическая — получили благодаря введению электронных представлений единый теоретический фундамент" [79, с. 468].

Развитие теории ковалентной связи Ленгмюром

Большая заслуга в разработке и пропаганде идей Льюиса принадлежит американскому физикохимику Ирвингу Ленгмюру. По образному замечанию американского историка химии М. Зальцмана: "если бы не Ленгмюр, то ключ к химической связи оказался бы надолго зарытым в химической литературе" [77].

Основные идеи своей работы [57] Ленгмюр выразил в одиннадцати постулатах, большая часть которых относится к строению электронной оболочки. Модель Ленгмюра, так же как и модель Льюиса, — электростатическая. Оба автора пытаются связать ее с ранней моделью Томсона. Но у теории Ленгмюра имеются некоторые преимущества, главное из которых — принцип заполнения электронных оболочек, которые Ленгмюр разбивает на "ячейки" (cells). В каждой ячейке может находиться не более двух электронов [2] . Следует заметить, что этот принцип заполнения электронных оболочек был распространен Ленгмюром на все известные тогда химические элементы. Но главное, что интересно в данной книге,- это его взгляд на природу химической связи. Ленгмюр выделяет два типа стабильных электронных конфигураций: электронную пару и октет. При образовании химической связи все валентные электроны участвуют в образовании октетов, либо переходя от одного атома к другому, либо путем образования общих электронных пар. Общее число электронов е, число октетов п и число электронных пар р, "удерживаемых сообща (hold... in common) октетами", Ленгмюр связал формулой 2р = 8т — е.

2

Исключение составляют только две ячейки первой оболочки, они могут вмещать только по одному электрону каждая.

На рис. 1 показаны некоторые схемы электронного строения молекул, взятые из работы [57].

Рис. 1. Электронные модели молекул по Ленгмюрум. а — молекулы СО2 и F2, б — молекула N2

Особого внимания заслуживает десятый постулат Ленгмюра, точнее, его вторая часть: "В исключительных случаях октет может образовываться около сложного ядра, т. е. около структуры, содержащей ядра двух атомов, удерживаемых вместе парой электронов" [57, с. 888].

Примером такого "исключительного случая" является молекула азота. Необычайная стабильность и химическая инертность этой молекулы была объяснена Ленгмюром тем, что она имеет следующее электронное строение: каждое ядро атома удерживает пару электронов первой оболочки (т. е., говоря современным языком, 1s-электроны не принимают участия в химической связи); восемь из оставшихся десяти электронов образуют октет (см. рис. 1,б), внутри которого, между ядрами азота, находятся два электрона.

Поделиться:
Популярные книги

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Возвращение

Кораблев Родион
5. Другая сторона
Фантастика:
боевая фантастика
6.23
рейтинг книги
Возвращение

Табу на вожделение. Мечта профессора

Сладкова Людмила Викторовна
4. Яд первой любви
Любовные романы:
современные любовные романы
5.58
рейтинг книги
Табу на вожделение. Мечта профессора

Титан империи 6

Артемов Александр Александрович
6. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 6

Свадьба по приказу, или Моя непокорная княжна

Чернованова Валерия Михайловна
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Свадьба по приказу, или Моя непокорная княжна

Неестественный отбор.Трилогия

Грант Эдгар
Неестественный отбор
Детективы:
триллеры
6.40
рейтинг книги
Неестественный отбор.Трилогия

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Идущий в тени 3

Амврелий Марк
3. Идущий в тени
Фантастика:
боевая фантастика
6.36
рейтинг книги
Идущий в тени 3

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага