Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи
Шрифт:
из которого следует правило Ланде для константы спин-орбитального взаимодействия
Легко убедиться, что
т. е. энергия терма равна средневзвешенному значению энергетических уровней тонкой структуры:
Согласно правилам
В качестве примера использования правил Хунда рассмотрим структуру энергетических уровней атома углерода для конфигурации ls22s22p2 (рис. 4). Из пятнадцати однодетерминантных шестиэлектронных функций этой конфигурации можно составить девять функций терма 3Р (L = 1 и S = 1), пять функций терма 1D (L = 2 и S = 0) и единственную функцию терма 1S (L = 0 и S = 0). Наименьшей энергии отвечает терм 3Р, обладающий максимальной мультиплетностью по спину. За ним следует терм 1D, поскольку он характеризуется большим значением квантового числа L, чем терм 1S, при равной спиновой мультиплетности.
Рис. 4. Структура энергетических уровней атома углерода
Спин-орбитальное взаимодействие приводит к расщеплению лишь терма 3Р, так как для остальных термов полный спиновый момент равен нулю (а мультиплетность — единице). Для терма 3Р константа А > 0 и, следовательно, уровни тонкой структуры этого терма возрастают в последовательности 3Р0, 3P1, 3Р2, где нижний индекс указывает значения квантового числа J.
Строго говоря, орбитальные энергии nl различны для разных термов одной конфигурации. Согласно расчету Клементи, атомным орбиталям 1s22s22p2– конфигурации углерода в зависимости от терма соответствуют анергии nl (в атомных единицах):
Таким образом, расстояние между энергетическими уровнями 2s- и 2p-АО при переходе от терма 3Р к терму 1S увеличивается почти на 0,16 ат. ед., что соответствует 4,3 эВ или 98 ккал/моль.
В большей степени орбитальные энергии зависят от атомной конфигурации. Эту зависимость можно показать на примере рассмотренной выше 1s22s22p2– конфигурации и возбужденных 1s22s22p3– и 1s22р4– конфигураций атома углерода [70]. Из множества термов, соответствующих этим конфигурациям, выберем термы 3Р и 1D:
Под полной электронной энергией атомной конфигурации следует понимать средневзвешенное значение энергии ее термов:
Было бы ошибкой отождествлять энергию конфигурации с суммой орбитальных энергий
Эта величина, как и орбитальные энергии, определяется не только конфигурацией, но и термом атомного состояния. Кроме того, Eoрб составляет лишь часть, причем меньшую часть, полной электронной энергии термов.
По мере увеличения заряда атомного ядра погрешности, связанные с пренебрежением одноэлектронным спин-орбитальньм взаимодействием, увеличиваются, и приходится учитывать расщепление каждой (nl)-оболочки на две подоболочки, различаю щиеся новым спин-орбитальным квантовым числом j:
При этом атомные спин-орбитали уже не могут быть представлены как произведение орбитали и спиновой функции ( или ), и конфигурация атома характеризуется распределением электронов по (nlj)-оболочкам:
Рис. 5. Структура энергетических уровней атома свинца
Многоэлектронные волновые функции, соответствующие уровням тонкой структуры, строятся в этом приближении, называемом приближением j-j– связи, непосредственно из детерминантов "расщепленной" конфигурации.
Схему j-j– связи иллюстрирует пример атома свинца, основная конфигурация которого (...6s26p2) аналогична основной конфигурации атома углерода (...2s22p2), но существенно отличается от последней структурой энергетических уровней (рис. 5)
Следует подчеркнуть, что выбор квантовых чисел, определяющих состояние атома, зависит от того, в каком приближении мы его рассматриваем. Так, без учета спин-орбитального взаимодействия состояние атома характеризуется квантовыми числами L и S. Однако при учете этого взаимодействия уже нельзя говорить о сохранении орбитального и спинового моментов по отдельности, и соответствующие им квантовые числа L и S не будут более "хорошими" квантовыми числами. Вместо них следует использовать квантовое число J, характеризующее полный спин-орбитальный момент импульса, который в этом приближении будет сохраняться. В то же время если спин-орбитальное расщепление энергетических уровней достаточно мало, можно установить соответствие между уровнями тонкой структуры и определяемыми в более грубом приближении энергетическими уровнями термов. Точно так же для тяжелых атомов квантовое число l, характеризующее одноэлектронный орбитальный момент импульса, перестает служить "хорошим" квантовым числом, лишь только мы учитываем спин-орбитальное взаимодействие на одноэлектронном уровне.
Атомные орбитали и их графическое представление
Рассмотрим атом водорода — простейший из атомов, включающий лишь один электрон, который взаимодействует с ядром по закону Кулона. Задача определения электронных состояний атома водорода (квантовомеханическая проблема Кеплера) — одна из немногих задач квантовой механики, имеющих точное аналитическое решение. Такая возможность обусловлена тем, что в этом случае гамильтониан допускает разделение переменных в сферической системе координат (r, , ), т. е. орбиталь , описывающая движение электрона в поле ядра, может быть представлена в виде произведения трех функций и каждая из них зависит только от одной независимой переменной:
При этом орбиталь nlm характеризуется тремя квантовыми числами: n, l и m (табл. 1).
Таблица 1. Атомные орбитали атома водорода для n = 1, 2, 3
Квантовое число l, целое и неотрицательное, определяет орбитальный момент импульса электрона, точнее его квадрат: l(l + 1).
Квантовое число m, целое и не превышающее по абсолютной величине l, представляет проекцию орбитального момента импульса на произвольно выбранную ось квантования z.