Чтение онлайн

на главную

Жанры

Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи
Шрифт:

Анализ заселенностей по Христоферзену и Бэкеру [33] формулируется в терминах коэффициентов разложения МО i по базисным АО a:

(4.85)

При этом предполагается, что вес (или заселенность) АО a, входящей в состав МО i, пропорционален квадрату модуля соответствующего коэффициента a:

(4.86)

Из условия нормировки

(4.87)

для

получается выражение

(4.88)

Суммированием величин nai по всем МО i с учетом их заселенностей далее определяются величины

(4.89)

Заселенности АО по Христоферзену и Бэкеру, как и заселенности по Малликену, могут принимать значения nCBa>2 (табл 11). В связи с этим интересно отметить, что Христоферзен и Бэкер обращали внимание на недопустимость таких значений, когда речь шла о малликеновском анализе заселенностей. Не менее серьезным обстоятельством, компрометирующим определение Христоферзена и Бэкера, является его неинвариантность относительно унитарного преобразования занятых МО, в то время как одноэлектронная матрица плотности и математические ожидания всех физических величин инвариантны относительно такого преобразования.

Таблица 11. Заселенности АО n0, nM и nCB в двухатомных молекулах LiH, BH, NH, FH, LiF, BF, CO [46]

Индексы химических связей и валентность

В химии принято различать одинарные, двойные, тройные, а также связи дробной кратности между атомами, образующими молекулу. Если МО могут быть локализованы на отдельных атомах и двухцентровых связях, то под кратностью связи двух атомов (А и В) естественно понимать число МО, локализованных на связи АВ. В случае молекул, обладающих неспаренными электронами, т. е. находящихся в основных или возбужденных состояниях с отличной от нуля мультиплетностью по спину, следует говорить о локализации спин-орбиталей и отождествлять с кратностью связи половину числа локализованных на ней молекулярных спин-орбиталей (МСО). В качестве примера можно привести ряд двухатомных гомонуклеарных молекул, для котоых локализованные МО (или МСО) являются либо орбиталями неподеленных электронных пар, либо связывающими двух-центровыми орбиталями (табл. 12).

Таблица 12. Кратности связей в некоторых гомонуклеарных молекулах

Однако такой подход к проблеме молекулярно-орбитальной интерпретации понятия кратности химической связи весьма ограничен двумя существенными причинами. Во-первых, локализация МО в орбитали неподеленных электронных пар и двухцентровые связывающие МО, как правило, не является строгой. Во-вторых, локализованные двухцентровые МО могут быть поляризованы, т. е. принадлежать одному из связанных атомов в большей степени, чем другому. При этом исчезает грань между полярной двухцентровой МО и орбиталью неподеленной электронной пары.

Эти причины обусловливают нецелочисленность кратности химических связей в многоатомных молекулах независимо от (того, какой спиновой мультиплетностью характеризуются их состояния. Как частичная делокализация МО, относящихся к некоторой связи, так и их поляризация в направлении любого из связанных атомов должны означать уменьшение кратности этой связи. В то же время делокализация МО, относящихся к другим связям, может вносить определенный вклад в кратность рассматриваемой связи.

Для учета указанных эффектов необходимо квантовохимическое определение кратности химической связи. К настоящему времени в квантовой химии используют довольно много различных индексов, характеризующих химическую связь двух атомов в молекуле, но не все из них соответствуют классическому понятию кратности химической связи. Хотя кратность химической связи не должна быть целочисленной, она должна быть все же величиной неотрицательной (нулевая кратность связи АВ означает отсутствие химической связи между атомами А и В) и инвариантной относительно унитарных преобразований (в частности, поворотов и гибридизации) атомных орбиталей отдельных атомов. Для гомонуклеарных двухатомных молекул квантово-химическое определение кратности должно обеспечивать целые или полуцелые ее значения (см. табл. 12).

Сформулированным условиям удовлетворяет определение кратности химической связи (КАВ) согласно равенству [3]:

(4.90)

где S — матрица перекрывания всех АСО атомов, образующих молекулу; R — матрица, представляющая в базисе этих АСО электронную плотность, точнее ее компоненту, соответствующую максимальному значению проекции полного спинового момента электронов молекулы на ось квантования; а и b — индексы спин-орбиталей атомов А и В.

При отсутствии одноэлектронного спин-орбитального взаимодействия матрица

, определяемая формулой

(4.91)

имеет квазидиагональный вид

(4.92)

где Р и Р — одноэлектронные матрицы плотности, соответствующие проекциям спинового момента +1/2 и -1/2. С учетом последнего равенства КАВ можно представить в виде

(4.93)

а также выразить через матричные элементы электронной (Р) и спиновой (Q) плотности [4]. При этом

(4.94)

(4.95)

и

(4.96)

Первый член в правой части этой суммы называется индексом Виберга [88] и используется для характеристики химических связей в молекулах с замкнутыми электронными оболочками, если расчет их структуры проводится в рамках приближения нулевого дифференциального перекрывания (S = I) (табл. 13).

Таблица 13. Индексы Виберга для некоторых соединений элементов первых трех периодов периодической системы [30]

Альтернативное квантовохимическое определение кратности химической связи было предложено в работе [42]. Согласно этому определению

(4.97)

В классической теории химической связи каждому атому молекулы сопоставляется определенная валентность, понимаемая как число, характеризующее состояние атома в этой молекуле. Распределение валентности VA атома A по связям его с остальными атомами молекулы описывается кратностями связей KAB, причем

(4.98)

Подставляя в это равенство выражение (4.90)$ можно определить VA через матричные элементы R и S [3]:

(4.99)

В однодетерминантном приближении для молекул, обладающих лишь замкнутыми электронными оболочками, выражение для валентности приводится к виду

(4.100)

где

— электронная лёвдинская заселенность а-й орбитали, принадлежащей атому А. Последняя сумма может быть исключена из выражения для VA унитарным преобразованием (гибридизацией) атомных орбиталей [21].

Поделиться:
Популярные книги

Возвращение

Кораблев Родион
5. Другая сторона
Фантастика:
боевая фантастика
6.23
рейтинг книги
Возвращение

Смерть может танцевать 4

Вальтер Макс
4. Безликий
Фантастика:
боевая фантастика
5.85
рейтинг книги
Смерть может танцевать 4

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Провинциал. Книга 2

Лопарев Игорь Викторович
2. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 2

Сердце дракона. Том 18. Часть 2

Клеванский Кирилл Сергеевич
18. Сердце дракона
Фантастика:
героическая фантастика
боевая фантастика
6.40
рейтинг книги
Сердце дракона. Том 18. Часть 2

Краш-тест для майора

Рам Янка
3. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
эро литература
6.25
рейтинг книги
Краш-тест для майора

Вечный. Книга IV

Рокотов Алексей
4. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга IV

Антимаг его величества. Том III

Петров Максим Николаевич
3. Модификант
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Антимаг его величества. Том III

Пропала, или Как влюбить в себя жену

Юнина Наталья
2. Исцели меня
Любовные романы:
современные любовные романы
6.70
рейтинг книги
Пропала, или Как влюбить в себя жену

Совок 4

Агарев Вадим
4. Совок
Фантастика:
попаданцы
альтернативная история
6.29
рейтинг книги
Совок 4

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Одиссея адмирала Кортеса. Тетралогия

Лысак Сергей Васильевич
Одиссея адмирала Кортеса
Фантастика:
попаданцы
альтернативная история
9.18
рейтинг книги
Одиссея адмирала Кортеса. Тетралогия

Последний Паладин. Том 5

Саваровский Роман
5. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 5

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор