Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи
Шрифт:
Об уменьшении при локализации МО обменной энергии электронного взаимодействия, а также об увеличении J(1) и уменьшении J(2) по сравнению со значениями, соответствующими каноническим МО, можно судить по данным табл. 4, полученным в работе [82] для гидридов бора.
Таблица 4. J(1), J(2) и K для исходных канонических и локализованных МО
В табл. 5 приведены результаты Эдмистона и Рюденберга по локализации МО в молекулах N2, СО и BF. Первая из этих молекул характеризуется симметрией Dh, гетеронуклеарные
Таблица 5. Орбитали Эдмистона-Рюденберга в молекулах N2, CO и BF
Практическая реализация метода Эдмистона-Рюденберга предполагает использование формализма самосогласованного поля и вычисление большого числа двухэлектронных интегралов, что представляет довольно сложную математическую задачу. Количество таких интегралов, как и время, необходимое для максимизации J(1) (или минимизации J(2) и К), очень быстро растет с увеличением числа электронов в системе и числа базисных АО, используемых для представления МО.
Следует отметить также, что метод Эдмистона и Рюденберга, строго говоря, не гарантирует соответствия между локализованными МО и отдельными атомами или связями. Впрочем, это обстоятельство может рассматриваться не только как недостаток, но и как достоинство метода, поскольку он допускает в принципе представление МО в базисе, существенно отличающемся от многоцентрового базиса АО.
В вычислительном отношении более удобным, чем метод Эдмистона-Рюденберга, является метод Бойса [31]. В качестве критерия, определяющего степень локализации МО, в этом методе используется сумма квадратов расстояний (Ri) между центрами тяжести орбиталей:
где
Локализованные по Бойсу МО характеризуются максимальным разделением в пространстве по критерию В и одновременно минимальными среднеквадратическими радиусами, точнее минимальным значением суммы их квадратов:
Недостатком метода Бойса является то, что он не обеспечивает эффективного разделения валентных и остовных АО. Например, 1s- и 2s-орбитали сферически-симметричны и никаким преобразованием нельзя изменить расстояния между их центрами тяжести (которое всегда равно нулю). С другой стороны, смешение остовной 1s-орбитали с валентными np-орбиталями должно приводить к увеличению расстояния от нулевого до некоторого конечного (для гибридных АО) значения. Максимуму значения В при этом должна соответствовать тетраэдрическая гибридизация 1s- и nр-АО. В действительности наряду с остовной 1s-орбиталью следует принимать во внимание и валентную ns-AO. Именно она должна смешиваться с другими валентными АО. Но с учетом сказанного выше ясно, что метод Бойса может приводить к завышенному вкладу остовных АО в связывающие МО.
Метод проецирования. Метод проецирования, предложенный в работах Полака [73] и позднее развитый Роби [74], основан на том, что одноэлектронная матрица плотности 1(x|x') в однодетерминантном приближении является ядром оператора проектирования на подпространство занятых молекулярных спин-орбиталей. Поэтому для любой нормированной спин-орбитали проекционная норма
удовлетворяет неравенству
причем
Следуя Полаку, локализованную на атоме А МО, описывающую неподеленную электронную пару или орбиталь внутренней оболочки атома, можно определять как линейную комбинацию орбиталей атома А (т. е. как гибридную АО этого атома):
максимизирующую проекционную норму
и базис g характеризуется матрицей перекрывания S, причем S'a = 0 для а, а' А, то столбец Ua, представляющий искомую гибридную АО ha, является собственным вектором матрицы Q(A) образуемой матричными элементами (SPS)aa' А, и этот собственный вектор отвечает максимальному собственному значению nа. Когда последнее равно двум, гибридная АО ha будет в точности совпадать с естественной МО, описывающей неподеленную электронную пару; когда na 2, гибридная АО ha будет аппроксимировать такую орбиталь.
Двух-, трех- ... и K-центровые МО, локализованные на атомных группах (связях) G = (A1,..., AK) и представленные линейными комбинациями вида
определяются в методе проецирования аналогичным образом, т. е. посредством диагонализации матриц Q(G) при условии ортонормированности
Согласно работам [73, 74], процедура локализации МО осуществляется в следующей последовательности:
1) сначала определяются одноцентровые
2) одноцентровые
и канонической ортонормировкой линейно-зависимого набора орбиталей g';
3) в полученном ортонормированием базисе, включающем меньшее число орбиталей, чем исходный базис АО g, определяются двухцентровые МО