Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи
Шрифт:
В то же время каждой канонической МО соответствует одно-электронная энергия i, которая, согласно теореме Купманса, определяет потенциал ионизации молекулы, то есть энергию удаления электрона из i-гo одноэлектронного состояния в молекуле. Эти орбитали могут успешно использоваться и при оценках энергий электронных возбуждений.
В однодетерминантном приближении канонические МО являются одновременно естественными молекулярными орбиталямц в том смысле, что одноэлектронная плотность представима в виде естественного разложения:
Весьма существенным обстоятельством является (N/2)-кратное вырождение естественных заселенностей n1 = ...nN/2 = 2.
Очевидно, что в силу указанного вырождения естественное разложение и распределение электронной плотности не изменяются при унитарном преобразовании орбиталей fi. В частности, унитарным преобразованием канонических МО можно попытаться построить МО, локализованные на отдельных атомах и связях. Такие локализованные молекулярные орбитали могут преобразовываться по приводимым представлениям точечной группы симметрии молекулы и в этом отношении существенно отличаются от канонических МО. Если некоторое преобразование симметрии меняет местами эквивалентные атомы или связи, то локализованные на этих атомах и связях МО также должны поменяться местами.
В качестве примера рассмотрим молекулу метана СН4. Канонические МО, представленные линейными комбинациями валентных АО для молекулы метана, могут иметь вид:
Орбиталь f0 является полносимметричной (неприводимое представление a1 тетраэдр и ческой группы симметрии Td). Орбитали f1, f2, f3 преобразуются по трехмерному неприводимому представлению t2 и соответствуют одному и тому же трехкратно вырожденному одноэлектронному уровню t2, определяющему первый потенциал ионизации молекулы метана.
Указанные канонические МО можно преобразовать в четыре эквивалентные относительно преобразований группы Тd, локализованные МО:
где i = 1, 2, 3, 4 и hiC — гибридные АО атома углерода, определяемые равенствами:
Как гибридные АО hiC, так и локализованные
Каждой из эквивалентных локализованных МО соответствует одно общее значение одноэлектронной энергии:
которому, однако, нельзя сопоставить потенциал ионизации или иную наблюдаемую характеристику молекулы.
Следует отметить также тесную связь понятий локализации МО и гибридизации АО, которую иллюстрирует рассмотренный выше пример. Гибридизация АО должна обеспечивать представление локализованных молекулярных орбиталей минимальным числом базисных гибридных атомных орбиталей. В свою очередь каждая гибридная АО должна участвовать в минимальном числе локализованных МО.
Как правило, построение локализованных МО из одних лишь соображений симметрии не является возможным и необходимо привлечение дополнительных критериев и определенной методики локализации. К настоящему времени разработано несколько методов преобразования канонических МО, найденных тем или иным путем, в МО, локализованные на отдельных атомах и связях. Некоторые из этих методов мы рассмотрим ниже.
Методы Эдмистона-Рюденберга и Бойса. В методе, предложенном Эдмистоном и Рюденбергом [38], определяются ор-битали самосогласованного поля, которые отделены друг от друга насколько это возможно, хотя на них заранее не накладывается условие определенной локализации в пространстве или на отдельных атомах и связях.
Среднее межорбитальное разделение характеризуется суммой кулоновских двухэлектронных интегралов:
причем унитарное преобразование локализации
должно обеспечивать минимальность величины J(2). В силу равенства
и инвариантности первой суммы в правой части этого равенства относительно преобразования (4.28) минимум величины J(2) соответствует максимуму
J(1) характеризует в среднем плотность орбиталей fi в смысле интеграла
определяющего энергию отталкивания двух электронов, находящихся в одном и том же i-м одноэлектронном состоянии, заданном орбиталью fi. Из равенства
и инвариантности
На возможность использования энергии обменного взаимодействия К в качестве критерия локализации МО указывали Леннард-Джонс и Попл. Минимизация К позволяет максимально приблизить выражение для энергии электронного взаимодействия к виду, соответствующему аппроксимации многоэлектронной функции простым произведением спин-орбиталей. В этом случае каждому электрону, точнее каждой паре электронов, можно приписать определенную локализованную орбиталь. Такое соответствие между электронами и орбиталями нарушается при антисимметризации N-электронной функции-произведения, т. е при учете неразличимости электронов и связанной с ней антисимметричностью точной многоэлектронной функции относительно перестановок электронов.