Магия чисел. Математическая мысль от Пифагора до наших дней
Шрифт:
Другой метод классической логики также нашел частое применение в математических рассуждениях. Вместо допущения, как в методе от противного, что утверждение S, которое мы надеемся доказать, ложно, мы предполагаем, что оно истинно. Затем мы выводим следствия из этого предположения. Если известно, что одно из них является истинным, и если шаги, которые вели к этому, логически обратимы, мы можем вывести по всем правилам классической логики, что утверждение S истинно. Но если шаги необратимы, мы не можем вывести правомерность утверждения S, и действительно утверждение S оказывается ложным. В спешке или по невнимательности необходимая обратимость шагов иногда упускается из виду. Подобный метод получил название «анализа», хотя слово это имеет другое важное значение (ненужное для нашей цели) в современной математике. Некоторые историки приписывают изобретение этого метода Платону, который конечно же оценил его возможности и в философском и в математическом рассуждении, даже если он и не являлся ни первооткрывателем этого метода, ни тем, кто
Метод доказательства от противного и аналитический метод вместе составляют главную тактику, по крайней мере более ранних стадий платоновской «диалектики» – категоричное слово для краткого определения метода рассуждения, но значение которого дает не слишком туманное понимание конкретного метода достижения истины. В диалектике все ложное счищается, как скорлупа ореха, и отбрасывается прочь, пока не останется ничего или только ядро неоспоримо очевидных утверждений. Однако в который раз природа обнаруженных истин зависит от тех постулатов, на которых базируется логика. Ученый легко может предоставить универсальную вескость постулатов и подобным же образом доказать непогрешимость логики. Как результат – система истин, приемлемых для тех, кто сходится во мнении, что и постулаты и логика бесспорны. В частности, если система должна удовлетворить рациональное мышление, логика не имеет права строить выкладки, не соответствующие постулатам, на которых она базируется. Именно в этом пункте современные математики нашли необходимым проявить осторожность. Утверждение относительно конечного множества предметов или явлений может быть доказано или опровергнуто опытным путем, или поочередно для каждого элемента множества, или, если множество слишком многочисленно, созданием четко определенного правила, посредством которого такое испытание могло бы быть осуществлено в конечный отрезок времени. Если «предметы» являются суждениями и требуется установить правдивость их всех, классическая логика разрешает утверждать, что каждое из них определенно «истинно» или «ложно», и испытание должно сводиться к решению, что есть что. И снова каждый элемент конечного множества имеет легко распознаваемую индивидуальность, благодаря которой может быть отличим от остальных: он именно такой, а не иной. Мы по-прежнему остаемся в пределах области здравого смысла, и пока никто не внес серьезных возражений против математического рассуждения относительно конечного множества, основанного на этих допущениях традиционной логики. Но с бесконечным множеством или бесконечной совокупностью у рационального мышления возникает повод для сомнений.
Возьмем, например, арифметическое утверждение, в котором каждое натуральное число является или четным, или нечетным. Поскольку множество всех натуральных чисел бесконечно, невозможно проверить каждое из них (поделив на 2 и отметив, является ли остаток 0 или 1), чтобы установить, какое оно. Аналогично для простых чисел: мы утверждаем, что любое натуральное число является либо простым числом, либо составным, и, если нам дано число из конечного множества чисел, с которыми возможно производить вычисления в пределах человеческих возможностей, мы определим, какое оно. Но если мы не в состоянии генерировать все четные числа или все простые, до какой степени, если таковая известна, мы можем здраво заявлять, будто все натуральные числа являются или четными, или нечетными; или простыми, или составными? И до какой известной степени можно считать, что существует то, что не может быть ни сгенерировано, ни использовано в выполнимых вычислениях? Есть ли у доказательства «вещественности» без определения метода изготовления та же самая логическая надежность, как у доказательства, которое фактически показывает, как произвести «вещественное» нечто?
Такие сомнения не тревожат тех, кто полагает, что числа существуют сами по себе и люди лишь наблюдают и изучают идеальное царство, в котором числа продолжат существовать, когда человеческая раса прекратит загрязнять землю. Подобно правилам классической логики и теорем геометрии, они также «существуют» в запредельной для человечества сфере Вечной жизни.
Другие же, более приземленные, в попытках обнаружить любые присущие ограничения, которым подчинена определенная система дедуктивного умозаключения, достигают следующих неожиданных выводов. В любой дедуктивной системе, достаточно инклюзивной, чтобы принимать арифметику натуральных чисел, «неразрешимые» утверждения могут быть построены. Утверждение считается «неразрешимым» в отдельно взятой специфической системе, если ни его правдивость, ни его ошибочность не может быть доказана любым способом в пределах этой системы. Существование неразрешимых утверждений обосновывается их демонстрацией и доказательством, что они являются неразрешимыми. Это не вопрос неспособности доказать или опровергнуть некоторые утверждения из-за элементарного недостатка мастерства. Никто и никогда не сможет доказать или опровергнуть неразрешимое утверждение.
Этот конечный вид достоверности возникает из метода дедуктивного умозаключения, существовавшего приблизительно двадцать три столетия от Платона и Аристотеля к Гёделю, который первый выдвинул (1931) неразрешимое утверждение. Философы Античности и их традиционные последователи Средневековья, похоже, стремились ко всемогущей логике, которая в конечном счете разрешает любую проблему либо положительно, либо отрицательно. Математические логики
Потрясающее открытие пифагорейцев, что не все числа рациональны (то есть выражение a/b, где a, b – целые числа), знаменует основной поворотный момент в развитии дедуктивного умозаключения. Это оказалось началом возникновения математических теорий непрерывности и бесконечности. Это также послужило поводом для появления значительно иной эпистемологии и пересмотра некоторых старых теорий познания; а в направлении современной науки теория греков о непрерывности подготовила путь к пониманию движения. Эта эпохальная веха в развитии математической и философской мысли столь значительна, что кое-что из ее истории может быть интересным.
После открытия, что квадратный корень из двух не является рациональным числом, греческие геометры доказали подобное для многих других квадратных корней. Во времена Платона существование иррациональных чисел (как мы сейчас сформулировали бы) занимало философов, которые только от случая к случаю интересовались математикой. В диалоге Платона «Теэтет» Сократ пытается добиться от Теэтета объяснения понятия «знание».
«– Наберитесь храбрости и смело скажите, что вы считаете знанием:
Набравшись храбрости, Теэтет отвечает.
– Думаю, что науки, которые я изучаю у Феодора [Киренского, славившегося в 380 году до н. э.], – геометрия и те, что вы сейчас упомянули, и есть знание. Я бы еще прибавил мастерство сапожника и других ремесленников. Все это – знание».
Понятно, что Теэтет не поскупился и включил слишком много в свой перечень, дабы угодить столь непреклонному экзаменатору, как Сократ, и философ вынуждает свою жертву признать, что тот так и не сумел сформулировать, что такое «знание» как отвлеченное понятие, и затем пытается вытянуть из него, что такое глина. Сократ, видимо, мучительно пытается заставить Теэтета уловить и понять, что универсальная глина – не эта глина и не та глина, а глина как Вечная идея, Форма, в которой простые конкретные глины изготовителей кирпичей и очагов, гончары и другие ремесленники в некотором смысле «участвуют». Сократа не интересует ни одна из них. Он ищет нечто универсальное, абстракцию, идею, и Теэтет довольно оптимистично решает, будто постиг суть. В ответ на вежливую просьбу Сократа он делится с ним:
– Феодор выписал нам кое-что относительно [квадратных] корней, таких как 3 или 5, показывая, как в линейном измерении (то есть согласно сторонам квадратов) они несоизмеримы с единицей. [В нашей терминологии квадратные корни из 3 и 5 – иррациональные числа.] Он выбрал числа, которые являются корнями вплоть до 17, но дальше он не пошел. Поскольку имеются неисчислимые корни, мы задумали объединить их всех под одним названием.
Теэтет рассказывает Сократу, что они нашли желаемую классификацию, но признает, что не способен дать Сократу столь же удовлетворительный ответ по поводу знания, таким образом подтверждая постулат Платона (повторяемый в различных формах повсюду в его трудах), что философия является более основательной и сложной наукой в сравнении с математикой.
Кстати, в этом рассказе Теэтета нет ничего, что подтверждало бы вывод некоторых историков математики, будто Феодор Киренский первым доказал, что квадратный корень из 2 является иррациональным числом. Полугеометрическое доказательство Евклида (III век до н. э.) дается в книге 10, суждении 27 его «Элементов». Хотя и менее понятное, нежели современное строго арифметическое доказательство, исторически оно более значимо. Оно иллюстрирует радикальное преобразование греческой математической мысли как следствие появления иррациональных чисел. Евклид формулирует теорему: «Сторона квадрата и его диагональ не имеют никакой общей меры». «Мера» здесь самое важное слово. Если диагональ квадрата, длина стороны которого равна единице, не измерима числом (имеется в виду рациональным числом), то чем же она «измеряется»? Греческие геометры назвали это измерение «величиной» и построили теорию «измерения» величин, в которых вместо обращения за поддержкой к знакомым натуральным числам они призвали на помощь пространственную интуицию. В отличие от декларации Пифагора, что «пространство является числом», новое кредо могло бы утверждать, что «число есть пространство».