Математические головоломки и развлечения
Шрифт:
Поскольку ответ кратен 9, его цифровой корень равен 9. Сумма цифр полученной разности меньше самой разности, а ее цифровой корень также равен 9, поэтому окончательный ответ заведомо кратен 9. На нашей схеме имеется всего 9 волшебных знаков. Начав счет с первого, мы всегда должны окончить его на последнем, девятом знаке.
Цифровые корни часто позволяют быстро и просто решать задачи, которые при ином подходе кажутся необычайно трудными.
Предположим, например, что вам нужно найти наименьшее из чисел, запись которых состоит из одних лишь нулей и единиц, делящееся без остатка
Понятие цифрового корня позволяет проанализировать и многие математические игры, например следующую игру в кости.
Играют вдвоем. Прежде всего задумывают какое-нибудь число (чтобы игра была интересной, обычно берут число, большее 20).
Первый игрок бросает кость. Число очков, выпавшее на верхней грани, запоминают, после чего второй игрок поворачивает кость одной из боковых граней вверх и прибавляет значащееся на ней число к уже набранным очкам. Игроки продолжают переворачивать кость и добавлять число, оказывающееся на верхней грани, к текущему счету до тех пор, пока кто-нибудь из них либо дойдет до задуманного числа, либо заставит своего противника превысить его. Анализ игры затрудняется тем, что числа на боковых гранях зависят от положения кости и изменяются, когда кость переворачивают. Можно ли указать оптимальную стратегию, которой следует придерживаться в игре?
Ключом к оптимальной стратегии служат числа, имеющие те же цифровые корни, что и задуманное число. Если вы сможете так изменить счет игры, чтобы он совпал с одним из таких чисел, или сумеете постоянно препятствовать аналогичному намерению своего противника, то вас непременно ожидает выигрыш. Поясним сказанное на примере. Предположим, что противники условились вести игру до 31 очка. Цифровой корень числа 31 равен 4. Единственный способ выиграть для первого игрока заключается в том, чтобы при бросании кости получить на верхней грани 4 очка, а при последующих ходах стараться либо довести счет до одного из чисел 4—13–22—31, либо помешать противнику сделать то же самое.
Вторая задача несколько труднее, и мы не будем останавливаться на ней подробно. Скажем лишь, что добиться проигрыша противника можно, либо бросая кость так, чтобы пятерка оказалась на нижней или верхней грани, и доводя затем счет до чисел 8—17–26, либо бросая кость так, чтобы на верхней или нижней грани выпала четверка, и стараясь довести счет до одного из чисел, встречающихся в следующих трех последовательностях: 9—18–27, 1—10–19—28 и 5-14-23.
Если не считать случая, когда цифровой корень задуманного числа равен 9, всегда существует одно или несколько положений игральной кости, при которых выигрыш первого игрока обеспечен.
Если же задуманное число кратно 9 (и, следовательно, его цифровой корень равен 9), то победы всегда может добиться второй игрок.
При случайном выборе числа, до которого ведется счет игры, шансы на победу у второго игрока намного выше, чем у первого.
Предположим, что максимальный счет определяется по выбору первого игрока. Каким в этом случае должен быть цифровой корень задуманного числа, для того чтобы шансы на выигрыш у первого игрока были как можно более высокими?
Многие из карточных фокусов, для показа которых не требуется особой ловкости рук, зависят от свойств цифровых корней.
Лучшим из них, по моему мнению, следует считать фокус Стюарта Джеймса «Предсказание будущего». Джеймс известен как блестящий мастер по придумыванию карточных фокусов, основанных на тонких математических идеях.
Из тщательно перетасованной колоды вы выбираете девять карт — от туза до девятки — и располагаете их по порядку так, чтобы туз оказался сверху. Показав карты зрителям, вы заявите, что сейчас разделите отобранные девять карт так, что никто не сможет с уверенностью сказать, где находится та или иная карта. Держа девять карт вверх рубашкой, вы делаете вид, что наугад разбиваете их на две части, а на самом деле перекладываете наверх три нижние карты, после чего ваши девять карт расположатся так (мы называем карты по порядку, сверху вниз; 1 соответствует тузу): 7-8-9-1-2-3-4-5-6.
Медленно снимая по одной карте из тех девяти, что вы держите в руках (каждый раз вы берете верхнюю карту), вы кладете их поверх большой колоды, лежащей перед вами на столе. При этом каждый раз, сняв очередную карту, вы спрашиваете зрителя, не желает ли он ее выбрать (зритель должен выбрать по своему усмотрению одну из девяти карт). Когда зритель укажет выбранную им карту, вы оставляете ее сверху тех карт, которые еще не успели выложить на стол, и откладываете их в сторону.
Попросите теперь зрителя снять верхнюю часть большой колоды. Подсчитав число карт в снятой и оставшейся частях колоды, найдите цифровые корни полученных вами чисел. Сложите оба цифровых корня и, если результат окажется больше 9, замените их сумму ее цифровым корнем. Откройте теперь выбранную зрителем карту (самую верхнюю из отложенных вами карт). Ее значение в точности совпадает с полученным вами результатом и позволяет предсказывать его заранее!
Объясняется фокус очень просто. После того как вы отобрали девять карт, расположили их по порядку и переложили три нижние карты наверх, самой верхней из девяти карт будет семерка. В колоде останутся 43 карты. Цифровой корень числа 43 равен 7. Если зритель не выберет семерку вы возвращаете ее в колоду, увеличивая тем самым число карт в ней до 44. После этого верхней картой у вас в руках становится 8, и цифровой корень числа 44 также равен 8. Иначе говоря, какую бы карту зритель ни выбрал, ее значение всегда совпадает с цифровым корнем числа карт в колоде. Разбиение колоды на две части, подсчет числа карт в каждой из них и другие описанные выше действия, разумеется, приводят к числу, совпадающему с цифровым корнем числа всех карт в колоде.
* * *
В начале этой главы было сказано, что поскольку основанием нашей системы счисления служит число 10, то цифровой корень любого числа совпадает с остатком при делении этого числа на 9.
Это утверждение нетрудно доказать. Некоторых читателей, может быть, заинтересует неформальный набросок этого доказательства.
Рассмотрим какое-нибудь четырехзначное число, например 4135. Его можно записать в виде суммы степеней числа 10:
(4 ∙ 1000) + (1 ∙ 100) + (3 ∙ 10) + (5 ∙ 1).
Вычитая по 1 из каждой степени 10, то же число можно представить в виде:
(4 ∙ 999) + (1 ∙ 99) + (3 ∙ 9) + (5 ∙ 0) + 4 + 1 + 3 + 5.
Все выражения в скобках кратны 9. Отбросив их, мы получаем сумму цифр исходного числа: 4+1+3 + 5.
В общем случае четырехзначное число abed представимо в виде
(а ∙ 999) + (Ь ∙ 99) + (с ∙ 9) + (d ∙ 0) + а + Ь + с + d,
и поэтому после вычеркивания чисел, кратных 9, должна оставаться сумма a+b+c+d. Разумеется, эта сумма не обязательно должна выражаться однозначным числом, но, записав ее так же, как исходное число, и вычеркнув все кратные 9, мы всегда можем найти ее остаток при делении на 9 и т. д. до тех пор, пока не получим однозначное число — цифровой корень. Сказанное справедливо для любого числа, как бы велико оно ни было. Поэтому цифровой корень — это число, которое остается после того, как из исходного числа вычеркнуто максимальное число девяток, то есть после деления исходного числа на 9.