Чтение онлайн

на главную

Жанры

Математический аппарат инженера
Шрифт:

– 30 -

Столбцевую и строчную матрицы называют также векторами и сокращенно обозначают как x = (x1, x2, ..., xn) y = (y1, y1, ..., y1). Обычно из контекста ясно, идет ли речь о векторе-столбце или о векторе-строке. В противном случае используют приведенные выше обозначения.

Матрица, количество строк и столбцов которой одинаково и равно n, называется квадратной матрицей

порядка n. Совокупность ii-клеток (i = 1, 2, ..., n) образуют главную диагональ квадратной матрицы. Матрица, все элемента которой вне главной диагонали равны нулю, т.е.

называется диагональной и более кратко записывается D = diag(d1, d2, ..., dn). Если в диагональной матрице d1 = d2 = ...= dn = 1, то имеем единичную матрицу n-го порядка

– 31 -

которая часто обозначается также через 1n или просто цифрой 1 (не следует принимать это обозначение за число, равное единице).

Матрица, все элементы которой равны нулю, называется нулевой и обозначается цифрой 0. Заметим, что нулевая матрица может иметь любой размер m x n, в то время как единичная матрица всегда квадратная. Матрица, состоящая только из одного элемента, обычно отождествляется с этим элементом.

Квадратная матрица зазывается верхней (нижней) треугольной, если равны нулю все элементы, расположенные под (над) главной диагональю:

Диагональная матрица является частным случаем как верхней (А), так и нижней (В) треугольных матриц.

3. Сложение матриц. Сумма двух матриц А и В одинаковых размеров определяется как матрица С тех же размеров, каждый элемент которой равен сумме соответствующих элементов матриц, т.е. C = A +B, если cij = aij + bij. Пример:

Из приведенного определения следует, что операция сложения матриц коммутативна, т.е. А+В = В+А, и ассоциативна, т.е. (А+В)+С = А+(В+С). Она естественным образом распространяется на любое число слагаемых. Очевидно также, что матрица А не изменяется при суммировании ее с нулевой матрицей тех же размеров, т.е. А + 0 = А.

4. Умножение матрицы на число. По определению произведением матрицы А на число (в отличие от матриц и векторов, числа часто называют скалярами) является матрица С = А, элементы которой получаются умножением соответствующих элементов матрицы А на это число , т.е. cij = aij. Пример:

– 32 -

Очевидно, справедливы следующие соотношения: (A + B) = A +B; ( + )A = A + A; A = (A), где A и B — матрицы одинакового размера; и — числа (скаляры). Общий множитель

элементов можно выносить за знак матрицы, считая его скалярным множителем.

Разность двух матриц одинаковых размеров сводится к уже рассмотренным операциям соотношением A — B = A + (-I)B, т.е. C = A — B, если cij = aij — bij.

5. Умножение матриц. По многим соображениям целесообразно определить эту операцию следующим образом: Произведением матрицы A размера (m x n) на матрицу B размера (n x r) является матрица C = AB размера (m x r), элемент cij которой, расположенный в ij-клетке, равен сумме произведений элементов i-й строки матрица A на соответствующие элементы j-го столбца матрицы B, т.е.

Умножение А на В допустимо (произведение АВ существует) если число столбцов А равно числу строк В ( в таких случаях говорят, что эти две матрицы согласуются по форме). Пример:

– 33 -

Для матриц A (m x n) и B(n x m) существует как произведение АВ размера m x m, так и произведение BA размера n x n. Ясно, что при m x n эти произведения не могут быть равными уже вследствие различных размеров результирующих матриц. Но даже при m = n, т.е. в случае квадратных матриц одинакового порядка, произведения АВ и ВА не обязательно равны между собой. Например, для матриц

имеем:

Отсюда следует, что вообще операция умножения матриц не подчиняется коммутативному закону (AB /= BA). Если же выполняется соотношение AB = BA, то матрицы А и В называю коммутирующими или перестановочными. Ассоциативный и дистрибутивный законы для матричного умножения выполняются во всех случаях, когда размеры матриц допускают соответствующие операции: (AB)C = A(BC) = ABC (ассоциативностью), A(B + C) = AB + AC и (A +B)C = AC +BC (дистрибутивность умножения слева и справа относительно сложения).

Умножение (m x n) — матрицы А на единичную матрицу m-го порядка слева и на единичную матрицу n-го порядка справа не изменяет этой матрицы, т.е. EmA = AEn = A. Если хотя бы одна из матриц произведения АВ является нулевой, то в результате получим нулевую матрицу.

Отметим, что из АВ = 0 не обязательно следует, что А = 0 или В = 0. В этом можно убедиться на следующем примере:

6. Транспонирование матрицы. Преобразование матрицы А, состоящее в замене строк столбцами ( или столбцов строками) при

– 34 -

сохранении их нумерации, называется транспонированием. Полученная в результате такого преобразования матрица называется транспонированной к матрице А и обозначается At или A':

Произвольная (m x n) — матрица при транспонировании становится ( n x m ) - матрицей, а элемент aij занимает ji — клетку, т.е. aij = atji.

Поделиться:
Популярные книги

Бастард Императора

Орлов Андрей Юрьевич
1. Бастард Императора
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Бастард Императора

На границе империй. Том 10. Часть 1

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 1

Имя нам Легион. Том 7

Дорничев Дмитрий
7. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 7

Измена. Вторая жена мужа

Караева Алсу
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Вторая жена мужа

Буря империи

Сай Ярослав
6. Медорфенов
Фантастика:
аниме
фэнтези
фантастика: прочее
эпическая фантастика
5.00
рейтинг книги
Буря империи

Пенсия для морского дьявола

Чиркунов Игорь
1. Первый в касте бездны
Фантастика:
попаданцы
5.29
рейтинг книги
Пенсия для морского дьявола

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Тринадцатый II

NikL
2. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый II

Сирота

Шмаков Алексей Семенович
1. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Сирота

Законы Рода. Том 9

Flow Ascold
9. Граф Берестьев
Фантастика:
городское фэнтези
попаданцы
аниме
дорама
фэнтези
фантастика: прочее
5.00
рейтинг книги
Законы Рода. Том 9

Красноармеец

Поселягин Владимир Геннадьевич
1. Красноармеец
Фантастика:
боевая фантастика
попаданцы
4.60
рейтинг книги
Красноармеец

Огненный князь 4

Машуков Тимур
4. Багряный восход
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 4

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор