Математический аппарат инженера
Шрифт:
Следует учитывать также и психологические аспекты математического образования. Ясно, что интерес к изучению какого-либо раздела математики существенно зависит от того, заготавливаются ли знания впрок или же они требуются для решения конкретной прикладной задачи. В последнем случае овладение знаниями, навыками и умением проходит значительно эффективнее и глубже, так как процесс обучения подогревается острой практической потребностью.
Итак, постоянное совершенствование математических знаний должно рассматриваться как естественный процесс в творческой деятельности инженера.
2. Множества
1. Что
– 20 -
геометрии, чисел натурального ряда, букв русского алфавита. На основе интуитивных представлений о подобных совокупностях сформировалось математическое понятие множества как объединения отдельных объектов в единое целое. Именно такой точки зрения придерживался основатель теории множеств немецкий математик Георг Кантор.
Множество относится к категории наиболее общих, основополагающих понятий математики. Поэтому вместо строгого определения обычно принимается некоторое основное положение о множестве и его элементах. Так, группа выдающихся математиков, выступающая под псевдонимом Н. Бурбаки, исходит из следующего положения: «Множество образуется из элементов, обладающих некоторыми свойствами и находящихся в некоторых отношениях между собой или с элементами других множеств».
2. Множество и его элементы. Утверждение, что множество А состоит из различимых элементов а1, а2, ... , аn (и только из этих элементов), условно записывается A= {а1, а2, ... , аn}. Принадлежность элемента множеству (отношение принадлежности) обозначается символом ,т.е. а1 A, а2 A,... аn A, или короче . Если b не является элементом A, то пишут b A или b A
Два множества A и B равны (тождественны), A = B, тогда и только тогда, когда каждый элемента А является элементом В и обратно. Это значит, что множество однозначно определяется своими элементами.
Множество может содержать любое число элементов — конечное или бесконечное. Соответственно имеем конечные (множество цифр 0, 1, ..., 9 или страниц в книге) или бесконечные (множество натуральных чисел или окружностей на плоскости) множества. Не следует, однако, связывать математическое понятие «множество» с обыденным представлением о множестве как о большом количестве. Так, единичное (одноэлементное) множество содержит только один элемент. Более того, вводится также понятие пустого множества, которое не содержит никаких элементов. Пустое множество обозначается специальным символом .
Роль пустого множества аналогична роли числа нуль. Это понятие можно использовать для определения заведомо несуществующей совокупности элементов (например, множество зеленых слонов, действительных корней уравнения x2 + 1 = 0). Более существенным мотивом введения пустого множества является то, что заранее не всегда известно (или неизвестно вовсе), существуют ли элементы, определяющие какое-то множество. Например, множество выигрышей в следующем тираже спортлото на купленные билеты может оказаться пустым. Никто еще не знает, является ли
– 21 -
пустым или нет множество всех решений в целых числах уравнения x3 + y3 + z3 = 30. Без понятия пустого множества во всех подобных случаях, говоря о каком-нибудь множестве, приходилось бы добавлять оговорку «если оно существует».
3. Множество и подмножества. Множество А, все элементы которого принадлежат и множеству В, называется подмножеством (частью) множества В. Это отношение между множествами называют включением и обозначают символом , т.е. А В (А включено в В) или В А (В включает А). Например, множество конденсаторов электронной цепи является подмножеством всех ее компонентов, множество положительных чисел — это подмножество множества действительных чисел.
Отношение А В допускает и тождественность (А = В), т.е. любое множество можно рассматривать как подмножество самого себя (А А). Полагают также, что подмножеством любого множество является пустое множество т.е. А. Одновременное выполнение соотношения А В и В А возможно только при А = В. И обратно А = В, если А В и В А. Это может служить определением равенства двух множеств через отношение включения.
Наряду с А В, в литературе можно встретить и другое обозначение А В. При этом под А В понимают такое отношение включение, которое не допускает равенства А и В (строгое включение). Если допускается А = В, то пишут А В (нестрогое включение). Мы будем придерживаться принятого ранее обозначения как для строгого, так и для нестрогого включения.
4. Множество подмножеств. Любое непустое множество А имеет, по крайней мере, два различных подмножества: само А и пустое множество . Эти подмножества называются несобственными, а все другие подмножества А называют собственными(эта терминология связана со словами «собственно подмножества», а не со словом «собственность»). Конечные собственные подмножества образуются всевозможными сочетаниями по одному, два, три и т.д. элементов данного множества.
Элементы множества сами могут являться некоторыми множествами. Например, книга из множества книг в шкафу может рассматриваться как множество страниц. Здесь следует обратить внимание на то, что речь идет об элементах множества, а не о подмножествах (никакая совокупность страниц не может рассматриваться как подмножество множества книг).
Множество, элементами которого являются все подмножества множества А, называют множеством подмножеств (множеством-степенью) А и обозначают через P(А). Так, для трехэлементного множества A ={a, b, c} имеем P(А) = {, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.
– 22 -
В случае конечного множества А, состоящего из n элементов, множество подмножеств P(А) содержит 2n элементов. Доказательство основывается на сумме всех коэффициентов разложения бинома Ньютона или на представлении подмножеств n-разрядными двоичными числами, в которых 1 (или 0) соответствует элементам подмножеств.
Следует подчеркнуть различия между отношением принадлежности и отношением включения. Как уже указывалось, множество A может быть своим подмножеством (A A), но оно не может входить в состав своих элементов (A A). Даже в случае одноэлементных подмножеств следует различать множество A={a} и его единственный элемент а. Отношение включения обладает свойством транзитивности: если A B и B C, то A C. Отношение принадлежности этим свойством не обладает. Например, множество A={1, {2,3} ,4} в числе своих элементов содержит множество {2, 3}, поэтому можно записать: 2,3 {2, 3} и {2, 3} A. Но из этого вовсе не следует, что элементы 2 и 3 содержатся в A (в приведенном примере мы не находим 2 и 3 среди элементов множества A, т. е. 2, 3 A.