Чтение онлайн

на главную

Жанры

Математический аппарат инженера
Шрифт:

6. Отношение толерантности

7. Законы композиции

8. Примеры алгебраических систем

9. Пространства

10. Комбинаторика

Список литературы

Глава 3. Матрицы

1. Действия над матрицами

2. Определители

3. Обращение матриц

4. Линейные уравнения

5. Дифференциальные уравнения

6. Функции от матриц

7. Матричные преобразования

8. Пространство переменных состояния

Список литературы

Глава 4. Графы

1. Деревья

2. Анатомия графов

3. Полюсные графы

4. Многополюсные компоненты

5. Системы координат

6. Неоднородный координатный базис

7. Сокращенный координатный базис

Список литературы

Глава 5

Логика

Одной из основных задач математической логики является анализ оснований математики. Но в настоящее время она уже вышла из рамок этой задачи и оказала существенное влияние на развитие самой математики. Из ее идей возникло точное определение понятия алгоритма, что позволило решать многие вопросы, которые без этого остались бы в принципе неразрешенными. Возникший в математической логике аппарат нашел приложение в вопросах конструкций вычислительных машин и автоматических устройств.

П.С. Новиков

В начале этой главы излагаются основные положения, относящиеся к логическим функциям. Подробно исследуются булевы функции двух переменных, зависимости между ними и методы построения функционально полных систем. Наряду с булевой алгеброй, рассматривается алгебра Жегалкина, что позволяет глубже проникнуть в структуру логических функций.

Аппарат математической логики в значительной степени сложился под влиянием прикладных проблем, в рамках которых развились его специфические особенности. Пробным камнем среди технических приложений была задача анализа и синтеза контактных схем. Успехи в этой области послужили стимулом для использования аппарата математической логики и в других областях.

Триумфом сотрудничества математики и техники явилось создание вычислительных машин с программным управлением. К тому времени, когда электроника, магнитная техника и электромеханика смогли предложит эффективные методы построения логических элементов и устройств преобразования информации, математическая логика уже располагала в общих чертах аппаратом для проектирования схем, реализующих сложные логические функции.

Дальнейшие обобщения привели к развитию теории автоматов, основной задачей которой является математическое моделирование физических или абстрактных процессов, технических устройств и некоторых сторон поведения живых организмов. Автоматы используются в качестве универсальной модели в самых разнообразных областях, в том числе и при проектировании вычислительных машин.

При рассмотрении конечных автоматов, контактных и логических схем используются различные способы представления логических функций: многомерные кубы, карты Карно, символика s-кубов. На основе таких представлений излагаются основные методы мини

– 503 -

мизации булевых функций и их применение к синтезу контактных и логических схем.

В последнее время, наряду с двоичными функциональными элементами, разработаны и находят практическое применение многозначные элементы, характеризующиеся рядом положительных особенностей. В связи с этим сильно возросло значение многозначной логики, изложению основных положений которой посвящен специальный параграф. Там же кратко представлены другие логики, развившейся в связи с техническими и биологическими проблемами: пороговая, мажоритарная, нейронная, потенциально-импульсная и фазоимпульсная.

Значительное внимание в настоящей главе уделяется логике высказываний и логике предикатов. Символический язык этих разделов математической логики широко используется не только в самой математике, но и в технической литературе. Кроме того можно полагать, что формальные методы логического обоснования станут со временем необходимым элементом при решении практических задач, а значит, и составной частью математического аппарата инженера. Этому в значительной мере способствует развитие автоматизации проектирования с применением вычислительной техники.

В заключительном параграфе приводятся некоторые сведения из теории алгоритмов,

которые могут представлять интерес для инженеров в связи с задачами алгоритмизации процессов производства и проектирования.

1. Логические функции

1. Логические функции как отображения. Отличительная особенность логических функций состоит в том, что они принимают значения в конечных множествах. Иначе говоря, область значений логической функции всегда представляет собой конечную совокупность чисел, символов, понятий, свойств и, вообще, любых объектов. Если область значений функции содержит k различных элементов, то она называется k-значной функцией.

Чтобы различать элементы области значений функции, их необходимо как-то отметить. Удобнее всего элементы перенумеровать числами от 1 до k или обозначить какими-нибудь символами (например, буквами). Перечень всех символов, соответствующих области значений, называют алфавитом, а сами символы — буквами этого алфавита (буквами могут служить как собственно буквы латинского, русского или другого алфавита, так и порядковые числа или любые другие символы).

– 504 -

Логические функции могут зависеть от одной, двух и, вообще, любого числа переменных (аргументов) x1, x2, ..., xn. В отличие от самой функции, аргументы могут принимать значения из элементов как конечных, так и бесконечных множеств.

В теоретико-множественном смысле логическая функция n переменных y = f(x1, x2, ..., xn) представляет собой отображение множества наборов (n-мерных векторов, кортежей, последовательностей) вида (x1, x2, ..., xn), являющегося областью ее определения, на множестве ее значений N = {1, 2, ..., n}. Логическую функцию можно также рассматривать как операцию, заданную законом композиции X1, X2, ..., Xn где - множества, на которых определены аргументы x1 X1, x2 X2, ..., xn Xn.

2. Однородные функции. Если аргументы принимают значения из того же множества, что и сама функция, то ее называют однородной функцией. В этом случае X1 = Х2 = ... = Хn = N и однородная функция, рассматриваемая как закон композиции Nn– > N определяет некоторую п-местную операцию на конечном множестве N.

Областью определения однородной функции у = f(х1, х2, ..., xn) служит множество наборов (х1, х2, ..., xn), называемых словами, где каждый из аргументов х1, х2, ..., xn замещается буквами k-ичного алфавита {0, 1, ..., k – 1}. Количество n букв в данном слове определяет его длину.

Поделиться:
Популярные книги

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Последняя Арена 4

Греков Сергей
4. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 4

Маяк надежды

Кас Маркус
5. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Маяк надежды

Великий перелом

Ланцов Михаил Алексеевич
2. Фрунзе
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Великий перелом

Сопротивляйся мне

Вечная Ольга
3. Порочная власть
Любовные романы:
современные любовные романы
эро литература
6.00
рейтинг книги
Сопротивляйся мне

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

Падение Твердыни

Распопов Дмитрий Викторович
6. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Падение Твердыни

"Дальние горизонты. Дух". Компиляция. Книги 1-25

Усманов Хайдарали
Собрание сочинений
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Дальние горизонты. Дух. Компиляция. Книги 1-25

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6