Математический аппарат инженера
Шрифт:
Пусть Xi– алфавит входной переменной хi, а Yi – алфавит выходной переменной yi. Конечный автомат с n входами и m выходами характеризуется входным алфавитом Х = Х1 x Х2 x ... Хn и выходным алфавитом Y = Y1 x Y2 x ... Ym, причем символами входного алфавита служат слова x = (x1, x2, …, xn)
– 564 -
связи и т.п.). В то же время при технической реализации автоматов используются преимущественно двоичные элементы и двузначная логика.
В реальных условиях сигналы представляются непрерывными функциями времени, поэтому для надежного различения сигналов требуется, чтобы новые значения на входах появлялись после окончания переходных процессов, связанных с предыдущими значениями. При рассмотрении логической структуры автоматов обычно отвлекаются от существа этих процессов и считают, что переменные изменяются не непрерывно, а мгновенно в некоторые моменты времени, называемые тактами. Интервалы между тактами могут быть различными, но без потери общности их можно считать равными t . Предполагается, что тактовые моменты t + 1 =t + t определяются синхронизирующими сигналами. Таким образом, вводится понятие дискретного автоматного времени tn(n = 1, 2, ...), причем переменные зависят не от физического времени, а от номера такта , т. е. вместо непрерывных функций x(t) рассматриваются дискретные значения х.
2. Состояния. Кроме входных и выходных переменных, можно выделить некоторую совокупность промежуточных переменных, которые связаны с внутренней структурой автомата. В комбинационных схемах промежуточные переменные непосредственно не участвуют в соотношениях вход - выход. Напротив, выходные функции последовательностных схем в качестве своих аргументов, кроме входных переменных, обязательно содержат некоторую совокупность промежуточных переменных s1, s2, …, sk, характеризующих состояние схемы. Набор всех возможных состоянии, которые присущи данной схеме, называется множеством состояний. Если S1, S2, …, Sk– конечные алфавиты переменных состояния s1, s2, …, sk, то множество состояний S = S1 x S2 x … x Sk также является конечным множеством.
Строгое определение понятия состояния связывается с той ролью, которое оно играет при описании конечных автоматов. Во-первых, значения совокупности выходных переменных на -м такте у = (y1, y2, …, ym), однозначно определяется значениями входных переменных x = (x1, x2, …, xn) и состоянием s = (s1, s2, …, sk), на том же такте, т.е. у = (x, s). Во-вторых, состояние s( + 1) в следующем ( + 1)-м такте однозначно определяется входными переменными х и состоянием s в предыдущем такте, т.е. s( + 1) = (x, s).
Таким образом, состояние конечного автомата в любой тактовый момент характеризуется значениями такой совокупности переменных, которая вместе с заданными значениями входных переменных позволяет определить выходные переменные в данный тактовый момент и состояние в следующий тактовый момент.
– 565 -
Ясно, что
3. Типы конечных автоматов. В технике с понятием автомата обычно связывается некоторое устройство, способное выполнять определенные функции без вмешательства человека или с его ограниченным участием. Однако такое понимание является слишком узким. В широком смысле конечный автомат - это математическая модель, отображающая физические или абстрактные явления самой разнообразной природы. Такая модель успешно используется как в технике (проектирование электронных вычислительных машин, систем управления и связи), так и в других областях - психологии и физиологии (исследование деятельности нервной системы человека и простейших видов поведения животных), лингвистике (анализ синтаксиса русского, английского или других языков, расшифровка древних рукописей), теории и практике административного управления и т.п. Универсальность теории автоматов позволяет рассматривать с единой точки зрения различные объекты, устанавливать связи и аналогии между ними, переносить результаты из одной области в другую.
Рис. 235. Блок-схема конечного автомата.
Конечный автомат М определяется как система с конечным входным алфавитом Х = { 1, 2, ... , p}, конечным выходным алфавитом Y = {v1, v2, …, vq}, конечным множеством состояний S = {1, 2, ..., i}, и двумя характеристическими функциями:
s( + 1) = (x, s);
у = (х, s),
называемыми соответственно функцией переходов и функцией выходов. Общая блок-схема конечного автомата (рис. 235) может быть представлена в виде комбинационной схемы, реализующей характеристические функции и , и памяти, сохраняющей на один такт предыдущее состояние автомата.
В определении автомата участвует три конечных множества X, Y, S и две функции и , задающие некоторые отношения между
– 566 -
элементами этих множеств. Следовательно, конечный автомат можно обозначить упорядоченной пятеркой М = (X, Y, S, , ). Мощности множеств X, Y, S равны соответственно:
где pi, qi, ri– количество символов в алфавитах входной переменной xi, выходной переменной yi и переменной состояния si. При двоичном структурном алфавите р = 2n, q = 2m и r = 2k. Если желают подчеркнуть мощности множеств X, Y и S, на которых определен конечный автомат, то его называют (р, q, r)-автоматом.
Характеристические функции и можно рассматривать как некоторые отображения множества X x S или его подмножества D X x S соответственно на множества S и Y. Если : X x X -> S и : X x S -> Y, автомат называется полным; если только : X x S -> S, автомат называют полным по переходам. В случае, когда функции и определены не для всех наборов из множества X x S, автомат называют неполным или частично определенным.