Математика. Поиск истины.
Шрифт:
Любая волна характеризуется длиной волны и частотой (числом циклов в секунду). Длина волны электромагнитного излучения определяется (хотя это, возможно, непосредственно не видно) размером витка (колебательного контура). Чтобы виток (или любой другой проводник, используемый для передачи электромагнитных волн в пространстве) имел разумные размеры, длина волны должна быть достаточно малой.
Познакомимся теперь поближе с основными характеристиками волн — длиной волны и частотой. Рассмотрим синусоидальную волну, изображенную на рис. 30. Полному циклу соответствует отрезок синусоиды от 0до A. Этот цикл многократно повторяется в течение секунды, и число таких циклов за одну секунду называется частотой. Длиной волны (ламбда) называется расстояние от P до Q. Расстояние,
f= c.
где c— скорость распространения волны.
Рис. 30.
Электромагнитные волны несколько сложнее. Распространяется, изменяясь по синусоидальному закону, не только электрическое, но и магнитное поле. Кроме того, векторы электрического и магнитного полей взаимно перпендикулярны и оба перпендикулярны направлению распространения волны. На рис. 31 показано, что векторы напряженности электрического Eи магнитного Hполей совершают колебания в двух взаимно перпендикулярных плоскостях.
Рис. 31.
Таким образом, первое и величайшее открытие Максвелла заключалось в том, что электромагнитные волны могут распространяться на тысячи километров от источника и, располагай мы соответствующим прибором, их можно было бы обнаружить и достаточно далеко от источника. Максвеллу принадлежит и второе сенсационное открытие, касающееся света. Свет, как явление, интересовал еще древних греков, к многочисленные эксперименты, проводимые на протяжении веков, привели в конце концов к двум «конкурирующим» теориям о природе света. Одна из них утверждала, что свет состоит из крохотных невидимых частиц, движущихся вдоль прямолинейных лучей. Согласно другой теории, свет представляет собой волны. Выдвигались различные предположения относительно того, как эти волны формируются и распространяются. Обе теории более или менее удовлетворительно, объясняли эффекты отражения и преломления света, т.е. изменения направления распространения света при переходе из одной среды в другую, например из воздуха в воду. Но если говорить о дифракции света (огибании светом препятствий, скажем непрозрачного диска), то здесь более разумное объяснение давала волновая теория. Согласно этой теории, свет ведет себя подобно волнам на воде, которые огибают корпус судна и сходятся за его кормой. В начале XIX в. убедительные аргументы в пользу волновой теории света представили Томас Юнг (1773-1829) и Огюстен Френель (1788-1827). Однако ни тот ни другой ничего не говорили о среде, в которой распространяется свет.
Нельзя не упомянуть еще об одном важном событии в истории науки о свете. В 1676 г. датский астроном Олаф Рёмер (1644-1719) показал, что скорость света конечна, и сумел достаточно точно оценить ее, получив величину 2,2•10 10 см/с. Скорость света Рёмер вычислил, сравнивая продолжительность покрытия Юпитера одним из его спутников в двух положениях: когда Земля в суточном вращении движется по направлению к Юпитеру и когда от него. Расстояния, проходимые светом в этих двух случаях, отличались примерно на диаметр Земли, и Рёмер измерил соответствующую разность времен. Более точные измерения, произведенные в XIX в., показали, что скорость света равна примерно 3•10 10см/с, или 300 000 км/с.
Последовательно развивая математическую теорию электромагнитного поля, Максвелл обнаружил, что электромагнитные волны распространяются со скоростью 300 000 км/с. Он знал, что по измерениям Олафа Рёмера и других физиков примерно такова же скорость распространения света. Совпадение скоростей распространения и понимание того, что как электромагнитное излучение, так и свет представляют собой волновое движение, побудили Максвелла отнести свет к электромагнитным явлениям. В 1862 г. Максвелл писал: «Мы вряд ли можем избежать вывода о том, что свет сводится к поперечным колебаниям той самой среды [эфира], которая является причиной электрических и магнитных явлений». Об этом же Максвелл говорил и в работе 1868 г. Эта идея Максвелла лежит в основе и современной теории света (см. гл. IX, посвященную специальной теории относительности).
Вывод Максвелла о том, что свет — электромагнитное явление, по праву считается вершиной
Электромагнитная теория света, согласно которой свет представляет собой последовательное чередование электрических и магнитных полей, позволяет нам наилучшим образом объяснить все явления, связанные со светом. Как мы уже говорили, различные теории света выдвигались и до Максвелла, но ни одной из них не удавалось адекватно объяснить все световые явления. Они получили удовлетворительное объяснение лишь в рамках электромагнитной теории света. На ее основе ученые сумели, например, предсказать, как будет вести себя свет при прохождении через различные среды. Старая концепция, трактующая свет как некую таинственную, неизменную по своим свойствам субстанцию, распространяющуюся по прямолинейным траекториям и удовлетворяющую законам отражения и преломления, давала достаточно хорошее приближение по вполне понятной причине. Хотя, строго говоря, световые волны распространяются в пространстве не прямолинейно и амплитуда волны в данной точке пространства изменяется со временем, а в каждый конкретный момент времени изменяется от точки к точке, эти колебания столь малы и быстротечны, что свет кажется непрерывным потоком.
Сделанное на основе математических рассуждений заключение, что свет представляет собой электромагнитные волны, иллюстрирует одно из замечательных достоинств математики. По словам одного из выдающихся современных философов Алфреда Норта Уайтхеда, «оригинальность математики состоит в том, что в математических науках выявляются взаимосвязи между вещами, крайне не очевидные, если исключить посредничество человеческого разума».
Во времена Максвелла физики уже в какой-то мере были осведомлены о существовании и свойствах ультрафиолетового (УФ) излучения: невидимые для человеческого глаза, эти волны «выявляют» себя, например, засвечивая фотопленку. Инфракрасное (ИК) излучение, также невидимое, переносит тепло, легко регистрируемое термометром. В солнечном свете представлено и ультрафиолетовое и инфракрасное излучения. Оба невидимых излучения возникают, если, например, пропустить электрический ток через специальные проводники, подобно тому как возникает видимый свет при прохождении тока через вольфрамовую проволочку (нить накала). Предположение о том, что инфракрасное и ультрафиолетовое излучения также представляют собой электромагнитные волны, вскоре получило экспериментальное подтверждение. Оказалось, что частоты УФ-излучения чуть выше, а частоты ИК-излучения чуть ниже частот света видимого диапазона.
Вскоре одна за другой были разрешены и другие загадки электромагнитных волн. В 1895 г. немецкий физик Вильгельм Конрад Рентген (1845-1923) открыл новое излучение, которое впоследствии стали называть рентгеновским. Как было установлено чуть позже, таинственные рентгеновские лучи есть не что иное, как электромагнитные волны с частотами еще более высокими, чем УФ-излучение. Наконец, было сделано еще одно открытие: испускаемое некоторыми радиоактивными веществами гамма-излучение также имеет электромагнитную природу и лежит в диапазоне частот более высоких, чем рентгеновское излучение.
Спектр электромагнитного излучения простирается в интервале частот 10 3– 10 23Гц, т.е. охватывает диапазон, верхняя граница которого превышает нижнюю в 10 20раз, или, если вместо десятичной шкалы перейти к двоичной, 10 20= 2 67(напомним, что в области звуков, воспринимаемых человеческим ухом, каждое удвоение частоты соответствует повышению тона на октаву). Из шестидесяти семи «октав» электромагнитного спектра только одна охватывает видимый диапазон. Это говорит о весьма ограниченных возможностях наших глаз. Но мы располагаем приборами, позволяющими обнаруживать инфракрасное, ультрафиолетовое, рентгеновское и гамма-излучение.