Чтение онлайн

на главную

Жанры

Математика. Поиск истины.
Шрифт:

В этом парадоксе и заключается своеобразие математики, ибо она позволяет открывать явления, которые, будучи взятыми отдельно от человеческого разума, отнюдь не очевидны, хотя и вполне реальны. Уайтхед сказал как-то, что выделять математику в человеческом мышлении — все равно что вместо Гамлета выдвигать на первое место в трагедии Шекспира Офелию, а не Гамлета: «Офелия, бесспорно, очаровательна и немного безумна, но Гамлет — все же центральный персонаж».

В 1931 г. Эйнштейн, характеризуя изменение, внесенное в наше представление о физической реальности работами Максвелла, назвал его «наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона» ([7], с. 138).

VIII

Прелюдия к теории относительности

Здравый смысл — это толща предрассудков, успевших отложиться в

нашем сознании к восемнадцати годам.

Альберт Эйнштейн

Аксиома — это предрассудок, освященный тысячелетиями.

Эрик Т. Белл

Как и «чистые» математики, физики-теоретики на рубеже XX в. были преисполнены гордости за достигнутые успехи, и состояние физических теорий не вызывало у них беспокойства. Разве не они открыли совершенно новый мир — мир электромагнитных явлений, сулящий ускорить и расширить культурный и технический прогресс человечества, существенно усовершенствовать средства связи? Возможно, что такому безмятежному, не омрачаемому критикой состоянию теоретической физики в какой-то мере способствовала гипотеза эфира, который на протяжении двух веков считался средой, где якобы распространяется свет и электромагнитное излучение других видов.

Но безмятежное спокойствие, царившее в физике на рубеже нашего века, было затишьем перед бурей. Когда восторги, вызванные замечательными достижениями, начали утихать, физики-теоретики поняли, что далеко не все фундаментальные проблемы решены. Одно из решений таких проблем — создание теории относительности — ознаменовало подлинный переворот в научной концепции реального физического мира. И хотя этот переворот не оказал столь сильного влияния на нашу повседневную жизнь, как радио и телевидение, ставшие со временем достоянием миллионов, для нашего понимания природы физического мира его последствия были необычайно важны.

Какие проблемы заставляли математиков и физиков в конце XIX в. углубленно размышлять и искать принципиально новые подходы к объяснению фундаментальных явлений окружающего мира? Первая из таких проблем — геометрия физического пространства. Чтобы понять суть этой проблемы, нам придется вернуться к прошлому.

На протяжении двух тысячелетий не один математик высказывал сомнение в физической истинности аксиомы Евклида о параллельных, которая гласит:

И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти две прямые неограниченно встречаются с той стороны, где углы меньше двух прямых.

([17], с. 15.)

Это означает (рис. 32), что если углы 1 и 2 в сумме меньше 180°, то прямые aи b, будучи продолженными достаточно далеко, пересекутся (на рисунке — справа).

Рис. 32.

Евклид имел достаточно веские основания, чтобы сформулировать свою аксиому именно так. Он мог бы утверждать, что если сумма углов 1 и 2 равна 180°, то прямые aи bникогда не пересекутся, сколько бы их ни продолжали, т.е. что прямые aи bв этом случае параллельны. Однако Евклид явно опасался предположить, что могут существовать две бесконечныепрямые, которые никогда не пересекаются. Существование таких прямых не подкреплялось опытом и отнюдь не было самоочевидным. Но на основе аксиомы о параллельных и других аксиом своей геометрии Евклид доказал существование бесконечно протяженных параллельных прямых.

Считалось, что аксиома о параллельных в том виде, в каком ее сформулировал Евклид, излишне сложна и ей недостает простоты других аксиом. Самого Евклида придуманный им вариант аксиомы о параллельных также не устраивал: недаром он обращался к этой аксиоме, лишь доказав все теоремы, какие только можно было доказать без нее.

Даже в античную эпоху математики неоднократно пытались решить проблему, связанную с аксиомой о параллельных Евклида. Эти попытки были двух типов. Одни пробовали заменить аксиому о параллельных какой-нибудь другой аксиомой, казавшейся им более очевидной. Другие старались, вывести аксиому Евклида из девяти других аксиом его геометрии. Если бы это

удалось, то аксиома о параллельных превратилась бы в одну из теорем и всякие сомнения в ее истинности разом отпали бы. На протяжении двух тысячелетий не один десяток самых выдающихся математиков, не говоря уже о менее известных, пытались и заменить аксиому о параллельных и вывести ее из других аксиом. История аксиомы Евклида о параллельных длительна, изобилует техническими деталями, и мы не будем пересказывать ее здесь подробно, тем более что она не имеет прямого отношения к главной теме нашего повествования и неоднократно излагалась в других работах. {10}

10

См., например, книгу автора: Клайн М. Математика. Утрата определенности. — М.: Мир, 1984.

Из аксиом, предлагавшихся взамен аксиомы Евклида о параллельных, нельзя не упомянуть по крайней мере одну. Мы остановили свой выбор на ней потому, что именно с такой редакцией аксиомы о параллельных мы обычно знакомимся в школьном курсе геометрии. Автором этого варианта аксиомы принято считать Джона Плейфера (1748-1819), который предложил его в 1795 г. Аксиома Плейфера гласит:

Существует одна и только одна прямая, проходящая через данную точку P, лежащую вне прямой l(рис. 33 ), в плоскости, задаваемой точкой Pи прямой l, которая не пересекается с прямой l.

([13], с. 95.)

Все остальные аксиомы, предлагавшиеся взамен аксиомы Евклида о параллельных и казавшиеся на первый взгляд более простыми, чем первоначальный вариант, при более тщательном рассмотрении признавались менее удовлетворительными. Нельзя не заметить, что аксиома Плейфера утверждает именно то, чего стремился избежать Евклид: существование двух бесконечных прямых, которые никогда не пересекаются.

Среди попыток второго типа, которые выражались в намерении вывести аксиому о параллельных из девяти других аксиом Евклида, наиболее преуспел член ордена иезуитов, профессор университета в Павии Джероламо Саккери (1667-1733). Он рассуждал так. Если принять аксиому, существенно отличающуюся от аксиомы Евклида о параллельных, то можно было бы прийти к какой-нибудь теореме, которая противоречила бы другой теореме. Такое противоречие означало бы, что аксиома, отрицающая аксиому Евклида о параллельных — единственную сомнительную аксиому евклидовой геометрии, — ложна. Но тогда аксиома Евклида о параллельных должна была бы быть истинной, т.е. следствием, вытекающим из девяти других аксиом.

Как впоследствии Плейфер, предложивший аксиому, эквивалентную аксиоме Евклида, Саккери сначала предположил, что не существует прямых, параллельных прямой l, которые проходили бы через точку P, лежащую вне прямой l(рис. 33 ). Из этой аксиомы и девяти других аксиом Евклида Саккери действительно удалось вывести противоречие. Тогда Саккери испробовал вторую единственно возможную альтернативу, предположив, что существуют по крайней мере две прямые pи q, проходящие через точку Pи не пересекающиеся с прямой l, сколько бы их ни продолжали.

Рис. 33.

Саккери доказал довольно много интересных теорем прежде, чем ему удалось обнаружить теорему, столь необычную и так резко выпадавшую из всего ранее известного, что он усмотрел было в ней противоречие с ранее доказанными утверждениями. Исходя из этого, Саккери счел доказанным, что аксиома Евклида о параллельных следует из девяти остальных аксиом евклидовой геометрии, и в 1773 г. опубликовал книгу под названием «Евклид, избавленный от всяких пятен» (Euclides ab omnia naevo vindicatus). Но как позднее установили математики, Саккери во втором случае не удалось прийти к противоречию, поэтому проблема, связанная с аксиомой о параллельных, по-прежнему оставалась открытой.

Поделиться:
Популярные книги

Меняя маски

Метельский Николай Александрович
1. Унесенный ветром
Фантастика:
боевая фантастика
попаданцы
9.22
рейтинг книги
Меняя маски

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Лорд Системы 13

Токсик Саша
13. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 13

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

"Дальние горизонты. Дух". Компиляция. Книги 1-25

Усманов Хайдарали
Собрание сочинений
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Дальние горизонты. Дух. Компиляция. Книги 1-25

Месть Пламенных

Дмитриева Ольга
6. Пламенная
Фантастика:
фэнтези
6.00
рейтинг книги
Месть Пламенных

Как я строил магическую империю 6

Зубов Константин
6. Как я строил магическую империю
Фантастика:
попаданцы
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 6

Идеальный мир для Лекаря 24

Сапфир Олег
24. Лекарь
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Идеальный мир для Лекаря 24

Внешняя Зона

Жгулёв Пётр Николаевич
8. Real-Rpg
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Внешняя Зона

Архил…? Книга 3

Кожевников Павел
3. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
7.00
рейтинг книги
Архил…? Книга 3

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь