Математика. Поиск истины.
Шрифт:
В своей знаменитой работе, опубликованной в 1827 г., Гаусс исподволь проводил следующую мысль: если мы изучаем поверхности как независимые пространства, то соответствующие этим пространствам двумерные геометрии могут оказаться весьма причудливыми в зависимости от формы поверхностей. Например, эллипсоидальная поверхность, имеющая форму мяча для регби, имеет иную геометрию, нежели сферическая поверхность.
А как обстоит дело на сфере с «параллельными»? Поскольку любые два больших круга пересекаются не один раз, а дважды, в сферической геометрии нам не обойтись без аксиомы, гласящей, что любые две «прямые» пересекаются в двух точках. Совершенно ясно, что геометрия поверхности сферы будет неевклидовой; впоследствии она получила название удвоенной эллиптической геометрии. Такая геометрия вполне естественна для поверхности Земли. Она достаточно «удобна в обращении» и по крайней мере ничуть не уступает той, которая возникает при рассмотрении
Идеи Гаусса были хорошо знакомы Риману. Гаусс предложил Риману несколько тем для публичной лекции, с которой тому предстояло выступить для получения звания приват-доцента, дававшего право на преподавание в Гёттингенском университете. Риман остановил свой выбор на основаниях геометрии и в 1854 г. в присутствии Гаусса прочел свою лекцию на философском факультете. Лекция Римана была опубликована в 1868 г. под названием «О гипотезах, лежащих в основании геометрии».
Проведенное Риманом исследование геометрии физического пространства потребовало пересмотра всей проблемы, касающейся структуры пространства. Риман первым поставил вопрос: что же нам достоверно известно о физическом пространстве? Какие условия, или факты, заложены в самом понятии пространства еще до того, как мы, опираясь на опыт, выделяем конкретные аксиомы, которые выполняются в физическом пространстве? Из этих исходных условий, или фактов, Риман намеревался вывести остальные свойства пространства. Такие аксиомы и логические следствия из них и необходимо априори признать истинными. Любые другие свойства пространства надлежало изучать эмпирически. Одна из целей Римана состояла в доказательстве того, что аксиомы Евклида являются эмпирическими, а отнюдь не самоочевидными истинами. Риман избрал аналитический подход (опирающийся на алгебру и анализ), поскольку геометрические доказательства не свободны от влияния нашего чувственного опыта и в них возможны допущения, не входящие явно в число посылок.
Поиск априорного (предшествующего нашему знанию) пространства привел Римана к исследованию локального поведения пространства, ибо свойства последнего могут изменяться от точки к точке. Такой подход получил название дифференциальной геометриив отличие от геометрии пространства в целом, которой занимался Евклид, а в неевклидовой геометрии — Гаусс, Бойаи и Лобачевский.
Следуя локальному подходу к геометрии, Риман столкнулся с необходимостью определить расстояния между двумя типичными, или характерными, точками, координаты которых отличаются на бесконечно малые величины. Расстояние между такими бесконечно близкими точками Риман обозначил ds. Он предположил, что квадрат этого расстояния в трехмерном пространстве (в действительности Риман рассматривал общий случай n-мерного пространства) можно представить в виде
ds 2= g 11 dx 1 2+ g 12 dx 1 dx 2+ g 13 dx 1 dx 3 + g 21 dx 1 dx 2+ g 22 dx 2 2+ g 23 dx 2 dx 3+ g 31 dx 1 dx 3+ g 32 dx 2 dx 3+ g 33 dx 3 2,
где g ij—функции координат x 1, x 2и x 3; g ij= g jiи
ds 2= dx 1 2+ dx 2 2+ dx 3 2,
которую в свою очередь можно рассматривать как один из вариантов теоремы Пифагора. Допуская зависимость коэффициентов g ijот координат, Риман тем самым учитывал, что природа пространства может изменяться от точки к точке. Из формулы для ds 2стандартными методами математического анализа можно извлечь множество фактов о длинах, площадях, объемах и других характеристиках геометрических фигур и тел.
В той же лекции Риман сделал немало важных замечаний. В частности, он сказал: «Остается еще выяснить, обеспечиваются ли опытной проверкой эти простые соотношения [которыми определяется метрика пространства] и если обеспечиваются, то в какой степени и в каком объеме?» ([23], с. 322). Свойства физического пространства по Риману надлежало определять только опытным путем. Например, он считал, что аксиомы евклидовой геометрии лишь приближенно истинны применительно к физическому пространству. Свою лекцию Риман закончил следующими пророческими словами:
Или то реальное, что создает идею пространства, образует дискретное многообразие, или же нужно пытаться объяснить возникновение метрических отношений чем-то внешним — силами связи, действующими на это реальное… Здесь мы стоим на пороге области, принадлежащей другой науке — физике, и переступать его нам не дает повода сегодняшний день.
Здесь Риман высказал предположение, что природа физического пространства должна каким-то образом отражать происходящие в нем физические явления. Риман, несомненно, развил бы эту глубокую идею, если бы не его преждевременная кончина (он умер в возрасте сорока лет).
Идею Римана удалось несколько развить математику Уильяму Кингдону Клиффорду (1854-1879). По мнению Клиффорда, некоторые физические явления обусловлены изменениями кривизны пространства. Кривизна пространства меняется не только от точки к точке, но и (вследствие движения материи) со временем. Физическое пространство в какой-то мере подобно холмистой поверхности, и законы евклидовой геометрии перестают действовать в таком пространстве. Более точное исследование физических законов не позволяет игнорировать существование «неровностей» в пространстве.
Вот что писал Клиффорд в 1870 г.:
Я считаю несомненным следующее. (1). Малые части пространства по своей природе аналогичны небольшим неровностям иа поверхности, в среднем плоской. (2) Свойство быть искривленным или деформированным непрерывно переходит от одной части пространства к другой наподобие волны. (3) Эта вариация кривизны пространства отражает то, что действительно происходит при явлении, которое мы называем движением материи, эфирной или телесной. (4) В реальном физическом мире не происходит ничего, кроме этих вариаций, вероятно, удовлетворяющих закону непрерывности.
Клиффорд высказал также предположение, что гравитационные эффекты, возможно, обусловлены кривизной пространства, но низкая точность пространственных измерений в то время не позволила подтвердить его догадку. Сколь ни блестящей была гипотеза Клиффорда, ей оставалось дожидаться своего часа — появления работ Эйнштейна по общей теории относительности.
Суть соображений, высказанных Риманом и Клиффордом, станет понятней, если рассмотреть, скажем, естественную геометрию земной поверхности в горной местности. На столь сильно пересеченной местности прямых может не быть. Какая бы кривая ни была здесь кратчайшим путем между двумя точками, она почти всегда отлична от прямой. Кроме того, кратчайшие пути, или геодезические, не обязательно имеют одинаковую форму. Представим себе, что обитателям такой горной местности понадобилось изучить треугольники. Итак, даны три точки и соединяющие их дуги — геодезические. Какими свойствами обладают такие треугольники? Ясно, что их свойства зависят от формы того участка местности, который заключен внутри геодезических, служащих сторонами треугольников. Сумма внутренних углов одних треугольников гораздо больше 180°, сумма углов других — гораздо меньше 180°. Обитатели нашей горной местности, несомненно, пришли бы к неевклидовой геометрии. Такая геометрия обладала бы одной важной отличительной особенностью: она была бы неоднородна. Свойства фигур в такой геометрии изменялись бы от точки к точке, как меняется рельеф горной местности.