Чтение онлайн

на главную - закладки

Жанры

Механика от античности до наших дней
Шрифт:

Даламберу принадлежат работы как по общим проблемам механики, так и по гидродинамике, теории колебаний и волн, теории движения твердого тела, небесной механике и др.

В 1743 г. был опубликован основной труд Даламбера по механике — его знаменитый «Трактат о динамике». Первая часть «Трактата» посвящена построению аналитической статики. Здесь Даламбер формулирует «основные принципы механики», которыми он считает «принцип инерции», «принцип сложения движений» и «принцип равновесия». «Принцип инерции» сформулирован отдельно для случая покоя и для случая равномерного прямолинейного движения. «Принцип сложения движений» представляет собой закон сложения скоростей по правилу параллелограмма. «Принцип равновесия» сформулирован в виде следующей теоремы: «Если два тела, обладающие скоростями, обратно пропорциональными их массам, имеют противоположные направления, так что одно тело не может двигаться, не сдвигая с места другое тело, то между этими телами будет иметь место равновесие». Во второй части трактата, называемой «Общий принцип для нахождения движения многих тел, произвольным образом

действующих друг на друга, а также некоторые применения этого принципа», Даламбер предложил общий метод составления дифференциальных уравнений движения любых материальных систем, основанный на сведении задачи динамики к статике. Здесь для любой системы материальных точек формулируется правило, названное впоследствии принципом Даламбера, согласно которому приложенные к точкам системы силы можно разложить на «действующие», т. е. вызывающие ускорение системы, и «потерянные» необходимые для равновесия системы.

Даламбер считает, что силы, соответствующие «потерянным» ускорениям, образуют такую совокупность, которая не влияет на фактическое поведение системы.

ЖАН ЛЕРОН ДАЛАМБЕР (1717—1783)

Французский математик, механик и философ. Даламбер сформулировал принцип механики, носящий его имя 

Иными словами, если к системе приложить только совокупность «потерянных» сил, то система останется в покое.

Далее в «Трактате» рассматриваются задачи, для решения которых, по мнению Даламбера, необходим этот принцип. К таким задачам он причисляет движение тел, соударяющихся произвольным образом, движение системы тел, связанных стержнями и нитями, и др. В «Трактате о динамике» Даламбер не вводит понятия связей, хотя и отличает, например, тяготеющие тела от «тел, которые тянут друг друга при помощи нитей или жестких стержней». Отметим, что сам Даламбер при изложении своего принципа не пользовался ни понятием силы (считая, что оно не обладает достаточной ясностью, чтобы входить в круг основных понятий механики), ни тем более понятием силы инерции. Изложение принципа Даламбера с применением термина «сила» принадлежит Лагранжу, который в своей «Аналитической механике» дал его аналитическое выражение в форме принципа возможных перемещений. В дальнейшем (с начала XIX в.) вектор m1w1 стали называть силой инерции материальной точки, а уравнение, выражающее принцип Даламбера, трактовать как утверждение о равновесии между приложенными к системе силами и силами инерции.

Значение принципа Даламбер видел в общности подхода к задачам механики. Высокую оценку труду Даламбера дал Лагранж, по мнению которого, хотя «…этот принцип не дает непосредственно уравнений, необходимых для решения проблем динамики, но он показывает, каким образом они могут быть выведены из условий равновесия».

Существенные результаты получил Даламбер в динамике твердого тела и небесной механике. В 1749 г. был опубликован его мемуар «Исследования о предварении равнодействий и нутаций оси Земли», в котором рассматривается задача о вращении Земли около ее центра масс под воздействием сил притяжения к Солнцу и Луне. Оперируя понятиями моментов инерции и вводя главные оси инерции вращающегося тела, Даламбер рассмотрел малые колебания Земли (нутационные движения) около движущейся по конусу прецессии оси вращения и привел полное динамическое объяснение. В 1751 г. в работе «О движении тела произвольной формы под действием любых сил» Даламбер дал более систематическое изложение вопроса о малых колебательных движениях твердого тела относительно центра инерции. А. Клеро в работе «Теории фигуры Земли» дал формулы для притяжения эллипсоида, близкого к сфере. Даламбер в третьей части «Исследований по различным важным вопросам, относящимся к системе мира» (1756) получил более общие формулы такого рода для тел, близких к сфере, но не обязательно имеющих форму эллипсоида.

Даламберу (наряду с Д. Бернулли и Эйлером) принадлежат основополагающие работы по гидромеханике, следствием которых были обобщающие работы Лагранжа по механике идеальной жидкости. В 1744 г. выходит сочинение Даламбера «Трактат о равновесии движения жидкостей», в котором он применяет свой принцип к разнообразным вопросам движения жидкостей в трубах и сосудах. Даламбер исследовал также законы сопротивления при движении тел в жидкости. Процесс образования вихрей и разреженности за движущимся телом он объяснил вязкостью жидкости и ее трением о поверхность обтекаемого тела. В этом же сочинении Даламбер (почти одновременно с Эйлером) выдвинул положение об отсутствии сопротивления телу, движущемуся равномерно и прямолинейно в покоящейся идеальной жидкости (так называемый парадокс Эйлера — Даламбера). Этот факт доказывается математически как для сжимаемой, так и для несжимаемой жидкости. В действительности же тело при своем движении в жидкости или газе всегда испытывает сопротивление. Это объясняется тем, что в реальной среде не выполняются предположения, на которых построено доказательство парадокса, т. е. всегда проявляются и вязкость, и вихри, в результате чего возникает поверхность разрыва скоростей. Все это вызывает сопротивление жидкости движению тела со стороны жидкости.

В 1748 г. Берлинская академия наук объявила конкурс на лучшее исследование о сопротивлении жидкостей. Даламбер представил работу, озаглавленную «Опыт новой теории сопротивления жидкостей» (опубликована

в 1752 г.), где, пользуясь своим принципом, выводит уравнения движения жидкостей как несжимаемых, так и сжимаемых и упругих. В гидростатике Даламбер использовал уравнения равновесия идеальной жидкости в частных производных, введенные Клеро. Однако его уравнения еще не обладали, по словам Лагранжа, «всей той общностью и простотой, которые им могут быть приданы» и которые столь характерны для результатов Эйлера. Оригинальным решением Даламбера здесь является введение комплексной скорости как функции комплексной координаты точки для плоского безвихревого течения несжимаемой жидкости. Труды Даламбера в области гидромеханики (вместе с трудами Эйлера, Д. Бернулли) в XIX в. послужили фундаментом для тех обобщений, в результате которых механика сплошной среды была выделена в самостоятельную дисциплину со своими специфическими понятиями и математическим аппаратом.

Даламбер занимался и экспериментальным исследованием сопротивления движению тел в жидкости в связи с запросами кораблестроения. В 1775—1777 гг. он вместе с А. Кондорсе (1743-1794) и Ш. Боссю (1730-1814) провел серию опытов над сопротивлением плавающих тел в безграничной жидкости и узких каналах.

Даламбер принимал активное участие в споре о «живой силе», начатом Декартом и Лейбницем и связанном с разработкой понятия о «мере силы», и в споре о принципе наименьшего действия. Спор о «живой силе» был полностью разрешен в «Трактате о динамике». Вопросу о принципе наименьшего действия Даламбер посвятил статью в «Энциклопедии». Отвергая претензии Мопертюи, считавшего этот принцип неким универсальным законом — непосредственным выражением могущества бога, Даламбер подчеркнул его чисто механическое значение: глубокую связь с принципом живых сил и возможность его применения для решения отдельных задач механики.

АНАЛИТИЧЕСКАЯ МЕХАНИКА ЛАГРАНЖА

Жозеф Луи Лагранж родился в Турине 25 января 1736 г. в семье обедневшего чиновника. Семнадцатилетним юношей Лагранж увлекся математическими науками, а в 1754 г. он уже профессор артиллерийской школы в Турине. Здесь он объединяет своих слушателей и образует научное общество, в дальнейшем превратившееся в знаменитую Туринскую академию.

Эйлер и Даламбер высоко оценили работы Лагранжа. В 1759 г. по их представлению Лагранж был избран членом Берлинской академии наук. С 1776 по 1787 г. он был директором физико-математического класса Берлинской академии наук. В этот период сборники Берлинской академии обогатились целым рядом блестящих работ Лагранжа как по математике, так и по общей и небесной механике.

В 1787 г. Лагранж переехал в Париж, где он в 1788 г. издал свою знаменитую книгу «Аналитическая механика». Элегантность и внутренняя гармоничность методов «Аналитической механики» вполне оправдывает мнение У.Р. Гамильтона, называвшего эту книгу научной поэмой (a kind of scientific poem).

В развитии механики появление «Аналитической механики» Лагранжа было выдающимся событием. В 1813— 1815 гг. этот труд вышел вторым, дополненным изданием и с тех пор несколько раз в течение XIX столетия переиздавался с дополнениями и примечаниями других ученых. Русский перевод в двух томах появился в 1950 г.{172}

Жозефу Лагранжу принадлежат многие выдающиеся работы по механике. С его именем до первого издания «Аналитической механики» связаны исследования о задаче трех тел, о применении в механике принципа наименьшего действия, о задаче вращения твердого тела вокруг неподвижной точки («гироскоп Лагранжа»), по теории волн на поверхности жидкости и др.

Как в этот период, так и после первого издания своего трактата Лагранж занимался небесной механикой и получил в этой области немало важных результатов: по расчету орбит планет и комет, по общим методам решения уравнений, определяющих движение тел Солнечной системы. В «Аналитическую механику» включены многие замечательные достижения Лагранжа, но она вошла бы в историю науки даже без них, благодаря оригинальности системы изложения и единству метода, использованного ее автором. В предисловии к первому изданию Лагранж с полным основанием писал, что «существует уже много трактатов по механике, но план настоящего трактата является совершенно новым. Я поставил себе целью свести теорию механики и методы решения связанных с нею задач к общим формулам, простое развитие которых дает все уравнения, необходимые для решения каждой задачи». И с законным удовлетворением Лагранж добавил к этому: «Я надеюсь, что способ, каким я постарался этого достичь, не оставляет желать чего-либо лучшего». Поэтому особенно поучительно познакомиться с тем, на основе каких исходных положений и какими средствами Лагранж создал стройную систему своей (аналитической) механики.

Сам Лагранж характеризовал свои методы таким образом: они «не требуют ни построений, ни геометрических или механических рассуждений; они требуют только алгебраических операций, подчиненных планомерному и однообразному ходу. Все, любящие анализ (подразумевается математический анализ, анализ бесконечно малых. — А. Г.), с удовольствием убедятся в том, что механика становится новой отраслью анализа, и будут мне благодарны за то, что этим путем я расширил область его применения»{173}. Эта характеристика, если принять ее безоговорочно, означает, что аналитическая механика Лагранжа является ветвью анализа, что она механика, лишенная «механических рассуждений», так как в ней указаны общие методы для составления уравнений любой задачи механики, после чего решение становится чисто математической проблемой.

Поделиться:
Популярные книги

Машенька и опер Медведев

Рам Янка
1. Накосячившие опера
Любовные романы:
современные любовные романы
6.40
рейтинг книги
Машенька и опер Медведев

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Real-Rpg. Еретик

Жгулёв Пётр Николаевич
2. Real-Rpg
Фантастика:
фэнтези
8.19
рейтинг книги
Real-Rpg. Еретик

Газлайтер. Том 8

Володин Григорий
8. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 8

(Противо)показаны друг другу

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.25
рейтинг книги
(Противо)показаны друг другу

Афганский рубеж

Дорин Михаил
1. Рубеж
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Афганский рубеж

Последний Паладин. Том 7

Саваровский Роман
7. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 7

Мымра!

Фад Диана
1. Мымрики
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Мымра!

Волк 5: Лихие 90-е

Киров Никита
5. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 5: Лихие 90-е

Новый Рал

Северный Лис
1. Рал!
Фантастика:
фэнтези
попаданцы
5.70
рейтинг книги
Новый Рал

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Системный Нуб

Тактарин Ринат
1. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб

Приручитель женщин-монстров. Том 5

Дорничев Дмитрий
5. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 5

Неверный. Свободный роман

Лакс Айрин
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Неверный. Свободный роман