Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Шрифт:
Это очень похожие сценарии. Единственное значимое различие – длина троса: он меньше начальной высоты при первом прыжке и больше начальной высоты при втором прыжке. По существу, это отношения между качающимся маятником и свободно падающим объектом. Поэтому мы могли бы ожидать, что физические законы, управляющие обоими этими движениями, схожи.
Свободно падающие объекты привлекали внимание Галилея (см. рис. 2.2).
Аристотель считал, что более тяжелый объект упал бы на землю быстрее, чем легкий, но Галилео подозревал, что такого не будет. Изначально Галилео усомнился в этом, когда был студентом в Пизанском университете. В заметке, написанной несколькими годами позже, Галилео упомянул, что его наблюдения были основаны на наблюдениях за камнями разных размеров, падающими на землю. Галилео наблюдал, как большие и маленькие камни падают на землю одновременно вне зависимости от размера, а не как полагал Аристотель – сначала большой, потом маленький. Учитывая, что оба начали падение одновременно где-то высоко в небе, Галилей пришел к выводу, что Аристотель был неправ.
Галилео был не первым, кто поставил под сомнение теорию Аристотеля о падающих объектах [11] , и даже не первым, кто проверил ее
Рис. 2.2. Объект сталкивают со здания (или башни) – с начальной высоты. Пока он падает, его скорость растет (в то время как высота уменьшается). Он достигает максимальной скорости как раз перед тем, как столкнуться с поверхностью. Время до касания с поверхностью напрямую зависит от начальной высоты.
11
Первую известную конкурирующую теорию сформулировал математик и астроном Гиппарх (ок. 190–120 до н. э.) спустя примерно два века после Аристотеля. В 1553 году Джамбаттиста Бенедетти (1530–1590) стал первым, кто предложил доказательство того, что объекты, сделанные из одинакового материала и отличающиеся весом, будут падать с одинаковой скоростью в одинаковой среде (например, в воздухе).
12
В 1586 году Симон Стевин (1548–1620) показал, что два тела различного веса падают с одинаковой скоростью.
«…он полностью погрузился в исследование; в результате Галилео, к большому неудовольствию всех философов, с помощью опытов, наглядных примеров и аргументов опроверг идеи самого Аристотеля о движении, считавшиеся в то время истиной: как, например, тот факт, что вес объектов из одинакового материала при движении через одну и ту же среду будет влиять на их скорость (на самом деле она будет примерно одинаковой). Раз за разом в присутствии других преподавателей и студентов он подкреплял эти идеи экспериментами, которые проводил с высоты Падающей Пизанской башни».
Галилео пришел к выводу, что объекты с разным весом из одного и того же материала падают с одинаковой скоростью и за одинаковое время; теория Аристотеля была опровергнута раз и навсегда. Эту историю рассказал Вивиани, который вел записи за Галилео в его последние годы, в 1657 году. Сегодня большинство историков не верят, что Галилео действительно бросал предметы с Пизанской башни.
Независимо от этого, мы не можем не гадать, вывел ли Галилей это следствие из своих наблюдений за маятником.
В конце концов, как мы отметили прежде, маятник – просто измененная версия свободного падения. Поэтому, так как период маятника – также определяющий его время падения [13] (время, которое требуется для падения в низшую точку качания) – не зависит от массы [14] , не должно быть сюрпризом и то, что время свободного падения объекта (время, через которое он коснется поверхности) также не зависит от нее.
Мы находим между качающимся маятником и свободно падающим объектом и другие общие черты. Опять-таки, скорость в любом пункте во время падения зависит от разности высот, и максимальная скорость все еще достигается в самой низкой точке – прямо перед тем, как объект коснется земли. А что же насчет времени падения? Мы уже отметили, что время падения маятника определяется периодом. Для изохронного маятника это означает, что время падения, как и период, зависит только от длины нити; то есть не зависит от начальной высоты (амплитуды). Тем не менее мы также заметили, что это особый случай для маятника, а в общем период – а, следовательно, и время падения – будет зависеть от изначальной высоты, так что большая высота увеличивает время падения.
13
Период маятника – время, которое требуется маятнику, чтобы совершить колебание и вернуться к исходному положению (например, слева направо и справа налево). Когда мы говорим о времени падения маятника, мы имеем в виду время, которое требуется для того, чтобы переместиться в самую низкую точку колебания. Это позволяет нам проводить сравнения со временем свободно падающих объектов или объектов, двигающихся по наклонной плоскости.
14
Мы рассматриваем случай, когда амплитуда была мала, но это верно для всех амплитуд.
Это также справедливо и для свободно падающих объектов: чем выше начальная высота падения, тем больше времени требуется объекту, чтобы достичь поверхности. Таким образом, взаимоотношения между высотой и скоростью проявляются при свободном падении так же, как и при движении маятника. И снова все это имеет отношение к сохранению энергии. Давайте посмотрим на другую систему – наклонную плоскость.
Движение по наклонной плоскости
Мы уже говорили о наклонной плоскости, когда обсуждали простые механизмы, но теперь мы хотим понять принцип движения катящегося по наклонной плоскости объекта (рис. 2.3) [15] . Сейчас вам должно быть ясно, что, как и в случае с маятником, это еще одна форма свободного падения. Тогда как свободному падению маятника препятствовал трос (нить), движение объекта на наклонной плоскости ограничено только тем, что он катится по наклону.
15
Поскольку объект катится по наклонной плоскости, его полное движение может быть разделено на вращательное движение центра масс и поступательное перемещение центра масс. Даже при том, что мы говорим об объекте, катящемся по наклонной плоскости, я скорее не рассматриваю
Рис. 2.3. После толчка объект катится по наклонной плоскости со своей начальной высоты. По ходу движения его скорость растет (а высота уменьшается). Объект достигнет максимальной скорости в самом конце движения по этой плоскости. Время, которое потребуется ему, чтобы достичь поверхности, зависит от начальной высоты (и угла) (см. также сноску 1 на стр. 40, чтобы узнать больше).
Скорее всего, Галилео начал изучать объекты, катящиеся по наклонной плоскости, в 1602 году, но тогда, будучи не уверенным в результате, перефокусировался на маятник. Однако в 1604 году Галилео придумал способ измерить увеличивающуюся скорость объекта, двигающегося по наклонной плоскости. Последовавшие за этим эксперименты предоставили Галилео точные результаты, которые он применял к свободному падению и маятнику.
Галилео было недостаточно знать, что два объекта, отличающиеся массой, падают с одинаковой скоростью. Он хотел знать, как скоро падающий объект достигнет определенной высоты над землей. К сожалению, Галилео встретил на этом пути проблемы, которые необходимо было преодолеть.
Хотя в то время существовали очень точные способы измерить расстояние и вес, подобного прибора для измерения времени не было; Галилео было необходимо создать «секундомер». Секундомер Галилео состоял из контейнера с водой и отверстием внизу. Поскольку вода вытекала из основания контейнера с постоянной скоростью (приблизительно по три унции жидкости в секунду), у Галилео был точный способ измерить время. Галилео описывает свое устройство и гарантирует его точность в «Диалог о двух главнейших системах мира» (снова через Сальвиати) так:
«Для измерения времени мы использовали большой сосуд, наполненный водой, который был расположен под наклоном; к днищу этого судна была припаяна труба маленького диаметра, по которой текла тонкая струя воды, которую мы собрали в маленьком стакане после каждого спуска… Собранную таким образом воду тщательно взвешивали после каждого раза; разница этих весов позволяла нам измерить разницу времени с поразительной точностью, хотя операция повторялась множество раз, – и никакого заметного отличия в результатах замечено не было».
Тем не менее Галилео было непросто даже с водяными часами – скорость объекта в свободном падении для точных измерений была слишком высока. Вместо этого Галилео создал способ замедлить свободное падение, сохраняя ключевые физические результаты, которые и позволили ему позже сделать точные измерения при помощи водных часов [16] . План Галилео был прост и изящен: рассмотреть объект, который катится по наклонной плоскости. Теперь объект «падал» гораздо медленнее, что позволило Галилео произвести точные измерения при помощи часов. Галилео был убежден, что основные принципы физики одинаковы, катится ли объект с определенной высоты (по наклонной плоскости) или совершает свободное падение с той же самой высоты. Следовательно, он предвидел, что математические выражения для расчета времени достижения высоты – пусть и не одинаковые [17] – будут похожи для обоих маршрутов. В конце концов, единственная разница между находящимся в состоянии свободного падения и катящимся вниз с одной и той же высоты объектами заключается в том, что последний двигается как по вертикали (высота), так и по горизонтали (длина) [18] , а первый только по вертикали, так как просто падает на землю.
16
Покойный Стиллмен Дрейк, канадский историк науки и эксперт по Галилео, предположил, что Галилео первоначально использовал другое средство для измерения времени движения объектов по наклонной плоскости. И отец, и брат Галилео были музыкантами, и Галилео также хорошо играл на лютне; возможно, Галилео использовал свои музыкальные способности. Он разместил тянущиеся ленты – или, в его случае, «струны» из кишок – вокруг наклонной плоскости, благодаря чему всякий раз, когда катящийся вниз объект касался их, возникал звук. Струны были расположены на одинаковом расстоянии друг от друга таким образом, что Галилео слушал, как катящийся объект касается их. Чтобы расположить струны таким образом, он использовал, вероятно, врожденное чувство ритма (может, топал ногой, когда слышал звук струны, или напевал ритм) и корректировал их позиции так, чтобы каждый лад соответствовал фиксированному временному интервалу. Теперь оставалось измерить расстояние от исходного положения шара до каждой струны, что Галилео мог определить очень точно. Учитывая, что тогда часы не могли измерить период времени точнее, чем секунда, этот метод, скорее всего, был более точным.
17
В обоих случаях общая форма математического уравнения, связывающего время и высоту, одинакова: h = 1/2 at2, где h – высота, на которую опустился (или скатился) объект от его изначальной точки, а – ускорение и t – время. Другими словами, высота здесь представлена как время, возведенное в квадрат. Это – закон падения Галилео, который он вывел, основываясь на своих экспериментах с наклонной плоскостью. В свободном падении ускорение происходит за счет силы тяжести, которая равна 9,8 м/с2, h = 4,9 м/с2 x t2. Однако, если мы рассматриваем наклонную плоскость, ускорение происходит медленнее, чем при свободном падении. Кроме того, при движении по наклонной плоскости ускорение зависит от угла наклона плоскости по отношению к горизонтальной поверхности; для свободного падения угол наклона составляет 90°.
18
Поэтому нам нужны оба эти направления, чтобы полностью описать движение катящегося (падающего) объекта.