Мост через время
Шрифт:
Узнав об этом, М.Н. Тухачевский и заместитель начальника Главного управления ГВФ Я.Я. Анвельт добились, чтобы Бартини назначили главным конструктором ОКБ НИИ ГВФ.
Но задание он получил другое: разработать экспериментальный самолёт, близкий по эксплуатационным и производственным характеристикам к серийному истребителю и чтобы скорость была более 400 километров в час.
Еще раз подчеркнем, что, считая такую машину нереальной, специалисты из Глававиапрома были по-своему правы. Они действительно знали все, во всяком случае больше, чем кто-либо со стороны, о самолётах всех типов и назначений, в том числе и о гипотетическом тогда истребителе, имеющем скорость 450 километров в час. Знали, какого он будет веса, с какой силой встречный воздух будет давить на его крыло, фюзеляж, оперение, шасси, на радиатор системы
Академик, возможно, имеет в виду таких одиноких, часто малограмотных старателей в технике, каким не были ни Туполев, ни Григорович, ни Бартини. Однако нет сомнения, что, если бы ОКБ НИИ ГВФ возглавил не Бартини, а один из тех специалистов (пусть очень хороших, первоклассных), кто считал скорость 450 километров в час несбыточной, она и не состоялась бы. Во всяком случае, в то время не состоялась бы, в 1933 году.
А окажись такой Бартини в полном одиночестве – он ведь все равно не бросит свои замыслы! Станет по возможности работать дома, как и бывало не раз в истории науки и техники, а потом, глядишь, двинется обивать чьи-то высокие пороги, «социально вредить», потому что вдруг да и окажется правым… Что тогда делать академикам?
Среди аргументов, подготовленных в Глававиапроме к спору с ведомством Ворошилова и Тухачевского, одним из самых сильных был предполагаемый вес такого истребителя. Вес получался непомерно большой – и за счет мотора с потребным ему запасом топлива и масла, и за счет конструкции самолёта, которая должна была выдержать аэродинамические и инерционные нагрузки в небывало скоростном полете. Причем значительная доля аэродинамической нагрузки приходилась на «торчащие» во встречном воздушном потоке стойки и колеса шасси и на радиатор системы охлаждения мотора.
Как можно было обойти эти соображения и расчеты?
В одной из рабочих тетрадей Бартини, к счастью, сохранившейся в личном архиве близкого ему человека, есть наскоро записанные тезисы выступления на какой-то конференции, уже послевоенной. Писал он для себя, малоразборчиво, но, зная его позицию в этих вопросах, смысл строк понять можно.
Техника, пишет он, развивается двояко: более или менее длительные периоды улучшений прерываются качественными скачками, диалектически. Улучшения – это «как делать», это следование выработанным методикам конструирования; скачки – «как не делать», «как обойтись без…». Нужны оба подхода, но второй, скачки, соответствующие (в тетради стоит знак равенства) «складкам во времени», культивируется слабо.
Или иначе – это уж я вспоминаю его рассуждения, которые сам слышал, – предположим, сказал он, что у вас никак не решается шахматная задача. И решить ее нельзя, это доказано. А вы, не считаясь с правилами игры, достаете из кармана еще одну пешку – и все у вас получается!.. Прием, разумеется, недопустимый в шахматах, но кто его запретил в технике?
Расставив только законные фигуры в задаче создания истребителя на скорость 450 километров в час, специалисты не предусмотрели, что шасси и радиатор системы охлаждения можно убрать из встречного воздушного потока – совсем убрать, и не на что станет ему давить, – а конструкцию самолёта, применив в ней новое сочетание старых, вполне реальных материалов и новую технологию соединения деталей, удастся сделать необыкновенно легкой. По статистике, такого снижения веса в 1933 году получиться не могло.
Шасси «Стали-6» полностью убиралось в полете, к тому же было не трех-, а одноколесным (впервые в истории нашей авиации) – с одним колесом под фюзеляжем, с небольшим костылем на хвосте и с двумя тоже убираемыми стойками на концах крыльев. Стойки поддерживали самолёт на стоянке, в начале разбега перед взлетом и в конце пробега после посадки. Теперь похожую схему шасси, велосипедную, применяют даже на тяжелых самолётах. Вместо колеса можно было поставить лыжу, об этом просил Тухачевский, так как фронтовому истребителю базой должен был служить не только благоустроенный аэродром с бетонными взлетно-посадочными полосами, но и любая ровная поляна подходящих размеров. «Мы – страна снежная, – сказал Тухачевский Анвельту и Бартини. – Полгода полевые аэродромы в заносах, и расчищать их пока нечем. Не заключать же с противником перемирие на зиму…» Лыжа в полете прижималась к фюзеляжу и тоже практически не давала дополнительного сопротивления.
В безрадиаторной, или, как ее еще называют, испарительной, системе охлаждения мотора «Стали-6» вода, отнимая тепло у цилиндров, не просто нагревалась градусов до 80, как в обычных системах, применявшихся на других самолётах, а все время кипела, испарялась. Пар уходил конечно же в радиатор, но особого типа: в зазор, щель, образованную двойной обшивкой крыла, – там, остывая, снова превращался в воду, которая опять подавалась в двигатель для охлаждения цилиндров. Работать такому мотору было тяжелее, жарче, но на такой режим его и рассчитали. Система получилась довольно сложная, зато во встречный поток ни одной своей частью не высовывалась, как нельзя лучше вписалась в небольшие габариты машины. Это помогло сделать обводы машины плавными, такими, что воздушное сопротивление полету сразу заметно упало. Намного позже немцы применили испарительное охлаждение мотора на рекордном истребителе «Хейнкель-100»; а сейчас такая система, несмотря на ее усложненность, разработана для доменных печей, где радиаторов можно ставить сколько угодно и каких угодно размеров. Значит, оказалась еще и экономически выгодной. Лицензии на нее у нас купили Япония, ФРГ, Голландия, Австралия…
А конструкция самолёта получилась необыкновенно легкой потому, что в ней были применены в наивыгоднейшем сочетании тонкостенные детали из разных сталей, нержавеющей и хромомолибденовой. Очень тонкие стенки этих деталей удалось соединить точечной электросваркой, хотя специалисты были уверены, что стали эти сваркой не соединяются.
До Бартини никто такой самолёт построить не догадался. Именно не догадался, так как все три находки никак нельзя было назвать открытиями, ранее науке неизвестными. Шасси на одном колесе? Бартини всего лишь использовал на суше опыт морской авиации (разумеется, переосмыслив этот опыт): с одной опоры взлетают и на одну садятся «летающие лодки». Убирающееся шасси? И до этого были поднимаемые шасси, назад отводимые, появилось уже и полностью убираемое – пассажирского ХАИ-1 в 1932 году [4] . Что вода, кипя и испаряясь, отнимает тепло у сосуда, в который налита, не дает ему нагреться выше температуры кипения – тоже давно не новость даже для домохозяек, ставящих чайник на плиту. А также что пар, попадая на холодные стенки конденсатора, например зимой на окна, оседает на них каплями, вновь превращается в воду…
4
Как утверждал В.Б. Шавров, полностью убирающееся шасси первым в СССР разработал все же Бартини для самолёта «Сталь-6». Проект был обсужден в ЦКБ весной 1930 года.
И только проблема сварки сталей разных марок потребовала сложного научного решения. Хотя опять же задумались об этом конструкторы не впервые.
Еще в начале века К.Э. Циолковский разработал проект дирижабля с оболочкой из гофрированных железных листов, потом из стальных. По расчетам, такая оболочка могла быть очень тонкой и легкой, потому что сталь была тогда самым прочным конструкционным материалом. Но соединить такие листы не удавалось, их слишком тонкие кромки рвались под болтами и заклепками. Пробовали разные другие соединения, они тоже «не держали» нагрузку, а точечную электросварку тогда еще не изобрели. Даже в конце 20-х годов конструкторы ее еще не освоили. В Англии, куда специальная древесина и дюраль ввозились из других стран (а в случае войны, морской блокады импорт был бы затруднен), некоторые фирмы пытались заменить эти материалы сталью, но тоже без сварки и успеха также не добились.
В те годы у нас в Военно-воздушной академии имени Н.Е. Жуковского начались опыты по точечной электросварке тонкостенных стальных конструкций. Затем в НИИ ГВФ появился отдел опытного самолётостроения, руководил им один из соратников А.Н. Туполева, главный конструктор Александр Иванович Путилов. В этом отделе в 1930-1933 годах были построены два пассажирских самолёта: «Сталь-2» и «Сталь-3». Оба они пошли в эксплуатацию, в серийное производство, а «Сталь-3» летала на линиях ГВФ до самой войны. Самолёты эти были очень легкие, соединения тонкостенных стальных деталей – сварные, точечные.