Чтение онлайн

на главную - закладки

Жанры

Научные исследования
Шрифт:

Ответ: Мы не можем узнать первоначальное количество машинок.

Глава 2

ГЕОМЕТРИЯ

Теорема 1. Любая плоскость представляет собой сумму значений Xn. При изменении значения n меняется сама плоскость.

Доказательство:

Квадрат имеет 4 вершины или Х4

Треугольник 3 вершины или Х3

Прямая – Х2

Круг – Хn

В начале мы имели круг – Хn. Если Хn уменьшить на множественное значение n, то мы рано или поздно получим

Х4 (квадрат).

Х4-1=Х3 (треугольник)

Х3-1=Х2 (прямая)

Х2-1=Х1 (точка)

Следовательно при увеличении точек Х1 увеличивается и сама плоскость.

Пример. Андрей на уроках труда вырезал из квадрата треугольник. Сколько треугольников у него получилось?

Решение: Квадрат Х=4, треугольник Х=3, то 4-1=3, где 1 – это прямая, которая имеет 2 конечные точки. Тогда 4 (квадрат) – 2 (прямая) = 2 (два треугольника)

Ответ: На уроках труда Андрей вырезал из квадрата два треугольника.

Теорема 2. Любые противоположности имеют две плоскости A и B, сменить значение которых может сила S.

А||B, но А=В*S или А*S=B или А*S=b*S

Доказательство:

Пусть А – плоскость дна куба, В – плоскость крышки куба, А||В не пересекаются.

Если сила S имеет возможность реагировать на силу А или силу В, то в любой момент А и В могут стать одной плоскостью. Допустим S – удар по крышки куба, тогда крышка упадет на дно куба и A=B*S.

Пример. Рабочий на стройке нес кирпич, который выпал из рук и раскололся. На какие фигуры раскололся кирпич?

Решение: Кирпич имел две плоскости А и В. В результате падения на него подействовала сила S согласно формуле А*S=B или А*S=b*S. Таким образом, кирпич разбился на новые плоскости.

Ответ: Кирпич раскололся на новые плоскости.

Теорема 3. Треугольник Х3 всегда может превратиться в круг Хn, потом вернуться в свою первоначальную форму Х3, пока для этого будут условия. Также происходит и с другими фигурами.

Хi+1=Хn и Хn=Хn-i, где i – значение фигуры

Доказательство:

Если треугольник – Х3, а круг – Хn, то Хn-1 – это прямая, Хn-3 – это треугольник. И обратно треугольник Хn+3= Хn, где Хn – круг.

Пример. Марина вырезала из круга треугольник, а потом из треугольника круг. Сколько треугольников получилось у Марины?

Решение: Хn-3=Х3=Хn+3=Хn, где Хn-это круг.

Ответ: У Марины получился круг.

Теорема 4. Параллельные линии представляют собой прямые. Как только одна прямая Х1 длиннее другой Х2, то параллельность линий сменяется одной прямой линией Х1.

Х1>Х2=Х1

Доказательство:

Одна прямая имеет точки Х1 и У1, вторая – Х2 и Y2. Если Х1>Х2, а У1>Y2, то получается что Х1У1>Х2У2, а значит Х1Y1 – образует линию длиннее Х2У2 и представляет собой одну прямую с точками точки Х1 и У1.

Пример. Три мальчика ехали на самокате по дороге. Первого позвала домой мама, второй остановился и всех дальше проехал третий мальчик. Где разминулись параллельные траектории мальчиков?

Решение: Представим траекторию каждого мальчика согласно условию, получим Х1У1<Х2У2<Х3У3, то есть параллельные траектории разминулись, когда Х1У1<Х2У2.

Ответ: Параллельные траектории мальчиков, которые ехали на самокате по дороге, разминулись уже тогда, когда первого мальчика позвала домой мама.

Теорема 5. Поместить одну фигуру Мn-1 в другую Мn можно до бесконечности. Только фигуры должны быть с каждым разом меньше, то есть Мn-1<Мn. Но любая фигура Mn, превышающая предыдущую Mn-1, может быть уменьшена.

Мn-1<Мn<Мn-1

Доказательство:

Представим квадрат в виде М4, в квадрат поместили круг Мn, чтобы в круг поместить вновь квадрат М4, он должен представлять собой величину M4<Мn<М4.

Пример. Дети вырезали несколько треугольников. Потом решили из треугольников вырезать новые треугольники, а из них уже круги. Могут ли дети из круга вновь вырезать треугольники?

Решение: Представим треугольник в виде М3, а круг – Mn, тогда согласно условию М3<M3<Mn. Следовательно, Mn<M3

Ответ: Дети могут из круга вырезать новые треугольники.

Теорема 6. N-е количество прямоугольников Т будет представлять собой квадрат P, если прямоугольники Tn имеют необходимый размер R, вычислить который позволяют данные квадрата.

Тn=P, если R=P-Tn=0

Доказательство:

Пусть T1+T2+…+Tn=P, то R=P-T1-T2-…-Tn=0. Для того чтобы N-е количество прямоугольников Т представляло собой квадрат P, необходимо определить размер R. Объединим две формулы в одну R=P-T1-T2-…-Tn=T1+T2+…+Tn-T1-T2-…-Tn=0 и получим равенство прямоугольников Tn с квадратом.

Пример. Ребята имели 5 машинок, которые хотели поместить в коробку, имеющую квадратное дно. Сколько машинок поместится в коробку?

Решение: Т=5, P – квадратное дно, R-?

Используя общую формулу R=P-Tn, получим R=P-5. То есть размер пяти прямоугольников будет равен размеру квадрата.

Ответ: Чтобы вычислить количество машинок, необходимо знать размер коробок и машинок.

Теорема 7. Увеличение фигуры F с точностью пропорционально ее центра, меняет форму фигуры на P. Радиус R в любом месте может иметь и другое значение R1. От радиуса R зависит неизменность фигуры.

Поделиться:
Популярные книги

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Изменить нельзя простить

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Изменить нельзя простить

Колючка для высшего эльфа или сиротка в академии

Жарова Анита
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Колючка для высшего эльфа или сиротка в академии

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Усадьба леди Анны

Ром Полина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Усадьба леди Анны

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Возвращение

Жгулёв Пётр Николаевич
5. Real-Rpg
Фантастика:
боевая фантастика
рпг
альтернативная история
6.80
рейтинг книги
Возвращение

"Фантастика 2023-123". Компиляция. Книги 1-25

Харников Александр Петрович
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Фантастика 2023-123. Компиляция. Книги 1-25

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке