О движении(Из истории механики)
Шрифт:
Это исследование было опубликовано Стевином в 1587 году на фламандском языке. Оно осталось неизвестным Галилею.
К исследованию свойств наклонной плоскости Галилей подошел иначе, чем Стевин. Галилею было известно «золотое правило» древних механиков — сколько выигрывается в силе, столько теряется в скорости. Например, поднимая груз на подвижном блоке, мы выигрываем в два раза в силе — скажем, 10 килограммов можно поднимать (если бы не было трения) силой в 5 килограммов. Но зато приходится смотать веревку вдвое более длинную, чем высота, на которую
Стевин первый отметил строгую пропорциональность между выигрышем в силе и потерей в скорости. Он указал, что возможное перемещение груза, подвешенного на подвижном блоке, вдвое меньше необходимого для этого перемещения уравновешивающей его силы.
Но Стевин не развил свою мысль, а Галилей доказал, что это правило справедливо для рычага и других простых машин. Оно представляет собой общий принцип, позднее развитый механиками и получивший название «начала возможных перемещений».
Наклонная плоскость — также простая машина. При ее помощи можно малой силой катить вверх большой груз, и чем меньше наклон плоскости, тем меньшая нужна для этого сила.
Применив к наклонной плоскости «золотое правило», Галилей нашел отношение между грузом на ней и движущей его силой.
Положим, что груз, скользящий без трения по наклонной плоскости, уравновешен гирей, висящей на веревке, которая прикреплена к грузу и переброшена через блок на верху наклонной плоскости.
Во сколько раз гиря должна быть меньше груза, чтобы они уравновешивали друг друга? Это легко найти, представив себе, что гиря немного опустилась, а груз подвинулся по наклонной плоскости вдоль ее длины на такое же расстояние. Не трудно доказать, что по вертикали большой груз пройдет во столько раз меньшее расстояние по сравнению с малым, во сколько высота наклонной плоскости меньше ее длины.
Но по «золотому правилу» произведение большого груза на расстояние, пройденное им по вертикали (а не вдоль наклонной плоскости), должно быть равно произведению малого груза на пройденное им расстояние.
Значит, малый груз во столько раз меньше большого, во сколько высота наклонной плоскости короче ее длины.
Когда груз q опустится на величину а, груз пройдет такое же расстояние вдоль наклонной плоскости. Но по вертикали он продвинется на расстояние меньшее в отношении ac/ab = AC/AB.
Так Галилей разрешил проблему наклонной плоскости, оставшуюся загадкой даже для гениального Архимеда. Он сумел обобщить найденный им закон наклонной плоскости, сделав знаменитый опыт с маятником.
Подвесив небольшой тяжелый шарик на тонкой нити, Галилей отводил его в сторону и отпускал. Шарик начинал колебаться, то опускаясь, то поднимаясь по дуге круга.
Подъем шарика при колебании происходил (если не принимать во внимание сопротивления воздуха и трения в точке подвеса) до той же высоты, с какой он начинал свое движение.
Галилей вбил гвоздь прямо под точкой подвеса маятника, так что при колебании его нить огибала гвоздь. Когда
Галилей отводил шарик в другую сторону, чтобы колебание его начиналось, когда нить обогнула гвоздь. Отпущенный шарик, пройдя по дуге меньшего радиуса, все-таки приобретал в нижней точке ту же скорость, которая позволяла ему подняться до той же высоты по большой дуге.
Опыт Галилея доказывал, что скорость, приобретаемая падающим телом, зависит только от разности высот, а не от длины пройденного пути.
Маятник, подвешенный в точке О, поднимается на ту же высоту, если он огибает гвоздь К.
Инерция движения
Некоторое представление об инерции тел было известно с древнейших времен. Всегда люди знали, что предметы не начинают двигаться сами по себе, без действия на них силы: тяжести перевозились лошадьми, пыль переносилась ветром, мельницы приводились в движение водой.
Из таких наблюдений и вытекали воззрения древних ученых на движение тел. Например, Аристотель не имел никакого понятия об инерции движения. Он был уверен, что тело движется только под действием силы и немедленно останавливается, как только прекращается ее действие.
Леонардо да Винчи и Бенедетти еще смутно представляли себе инерцию движения. Только Галилей вполне ясно осознал это явление. Он ввел в механику и самый термин «инерция», впервые упомянутый Кеплером.
В ранних работах по механике Галилей еще не сформулировал принципа инерции. Но он, что совершенно очевидно, пользовался им в своих исследованиях.
Однако современники его, усваивавшие в университетах динамику Аристотеля, не были подготовлены к восприятию этого нового понятия в механике. Поэтому Галилею пришлось выдержать упорную борьбу со схоластами.
В своих умозрительных положениях аристотелианцы часто ссылались на опыты, но… они не делали их.
Так было и с вопросом об инерции.
Схоласты утверждали, будто камень, сброшенный вниз с мачты движущегося корабля, отстанет от мачты. Между тем стоило только сделать этот опыт, чтобы убедиться в ошибочности их мнения.
Галилей же указывал на сделанные в действительности наблюдения, что «камень, падающий с корабельной мачты, всегда попадет в одно и то же место, движется ли корабль или стоит на месте».
Незнание инерции ставило в большое затруднение схоластов, когда нужно было объяснять явление движения.
Почему летит камень, брошенный рукой?
Почему продолжает плыть лодка, когда уже подняты весла?
Аристотелю постоянно приходилось придумывать объяснения, которые если и могли быть приняты, то только для данного случая. Схоласты даже и не стремились сами объяснять явление природы. Им достаточно было знать, что говорил об этом Аристотель.