Палеонтология антрополога. Три эры под одной обложкой
Шрифт:
Как вы там, потомки?
Грибы Fungi были одними из первых эукариот, а потому должны были вступать в бурную конкуренцию с бактериями, которым тогда принадлежал мир. Неспроста грибы сплошь и рядом бывают либо лекарственными, либо ядовитыми. Тут главное помнить, что свойства грибов никак не привязаны к человеку: мукор или мухомор эволюционировали не потому, что как-то влияли на наше самочувствие, они всегда противостояли бактериям. Разница целебных и опасных грибов очень проста: полезные грибы, типа пеницилла Penicillium, гнобят бактерий по тем биохимическим системам, которых нет у нас, а ядовитые, типа бледной поганки Amanita phalloides – по тем, что у бактерий и нас совпадают. Накал страстей усиливается тем, что большинство грибов – редуценты, разлагают органику до неорганики, что трудно и невыгодно, то есть грибы дерутся с гнилостными бактериями за самые бедные энергией ресурсы, а чем дефицитнее выигрыш, тем злее битва. Одновременно для редуцирования необходимы очень мощные ферменты, так что оружия у грибов хватает. Бактерии разнообразнее, многочисленнее, и они быстрее плодятся, зато грибы – эукариоты, у них есть большое ядро с длинным геномом, в который можно прописать кучу ядрёных ферментов; да к тому же большинство снабжены мощной хитиновой клеточной стенкой, так что в извечной битве, длящейся с протерозоя, грибы, хотя и не могут окончательно победить, держатся достойно.
Грибы довольно быстро не только освоили борьбу с бактериями, но и вступили с ними в симбиоз; война – лучший двигатель торговли, это всем известно.
Первые грибы были одноклеточными, но быстро и весьма автоматически – в силу неподвижности клеток – стали колониальными, а оттуда недалеко и до простейшей многоклеточности. Тонкие нити-гифы грибов еле заметны, но вся грибница-мицелий может достигать огромных размеров. Самый большой организм на планете – «орегонский монстр» – опенёк тёмный Armillaria ostoyae – занимает площадь 880 гектаров и живёт уже 2400 лет. На земле мы можем найти в лучшем случае плотные кучки маленьких грибочков, а с самолёта видно гигантское пятно более светлой листвы деревьев, на которых паразитирует грибное чудовище.
Таппания и другие похожие микроокаменелости суммарно называются акритархами. Среди этой заведомо сборной группы планктона наверняка были и водоросли, и какие-то иные существа. Между прочим, в пользу эукариотического статуса акритарх говорит как их большой размер, так и шиповатость наружных оболочек. У бактерий поверхность всегда гладкая, максимум могут быть жгутики, а вот эукариоты со своим мощным метаболизмом могут направить часть энергии на создание всяких украшений.
Маленькая тонкость
Эти же два признака – величина и скульптурность – могут быть использованы как маркёры существования в тогдашних морях каких-то других живых существ. Когда есть кто-то беззащитный и притом съедобный, обязательно найдётся и кто-то хищный. Избежать напасти можно разными способами: стать незаметным или быстрым, ядовитым или малопитательным, бронированным или опасным, изменить суточный ритм или величину. Судя по тому, что некоторые раннепротерозойские акритархи уже были шипастыми, кто-то их уже ел. Правда, рельеф мог возникнуть и для других целей, например, лучшего удержания в парящем состоянии в воде или сцепляния в компании. Но до момента 1,35 млрд л. н. акритархи были маленькими – так легче болтаться в толще воды и не тонуть. А вот после они начинают расти, достигая рекордных значений аж в 2–3 мм между 1 и 0,7 млрд л. н.; в это же время – в тонийском периоде, или верхнерифейской эре – акритархи пережили первый значительный расцвет.
Крупнокалиберность – почти предел для одноклеточных существ – возникла явно неспроста. А ведь один из хороших способов спастись от хищника – увеличиться в размерах, чтоб у супостата пасть так широко не смогла открыться. Одновременно некоторые акритархи опять становятся шипастыми. Очевидно, было от кого защищаться, существовали и какие-то другие твари, нападавшие на акритарх. К сожалению, хищники не имели мало-мальски твёрдых оболочек, а потому не оставили никаких палеонтологических следов. Можно лишь догадываться, что это были какие-то «амебоиды».
Забегая вперёд, можно упомянуть, что заметно позже, в венде, акритархи резко уменьшились, зато приобрели ещё более мощные шипы: гонка защиты и вооружения продолжалась. Очевидно, возникли уже очень большие хищники, и тогда стало полезно быть маленьким, так как крупному плотоядному невыгодно гоняться за мелочью – при этом он потратит больше энергии, чем получит, съев малявку.
Ещё одно следствие сочетания аэробности, эукариотичности, конкуренции и пресса хищников – появление многоклеточности. Ключевым тут стало, как ни мрачно это звучит, изобретение смерти. Дело в том, что одноклеточные организмы технически вечны, ведь нельзя же считать деление надвое за гибель (кстати, из этого вырастает проблема индивида и эволюции индивида: любая современная амёба или эвглена – это тот же конкретный индивид, что жил миллиарды лет назад, причём амёба за эти бездны поколений накопила огромные отличия от эвглены). В принципе, то же происходит с колониальными организмами: любая клетка в колонии только тусуется рядом с остальными, но делится сама по себе. А вся суть многоклеточного организма в том, что только некоторые избранные клетки получают шанс на бессмертие, а остальные имеют сугубо вспомогательную роль и обречены на исчезновение. Но любая клетка по исходной своей сути стремится безгранично делиться и жить вечно, убедить её в обратном крайне сложно, особенно учитывая, что геном-то во всех клетках многоклеточного существа одинаков, ведь все они – производное одной исходной зиготы (а когда клетка многоклеточного организма из-за мутации сходит с ума и всё-таки вдруг решает, что она бессмертна, она становится раковой, причём тем более опасной, что весь геном-то и базовая биохимия у неё родные, так что иммунная система на неё не реагирует). Для того чтобы в одних клетках работали одни группы генов, а в других они молчали, а включались иные, нужна очень хитрая регуляция и как минимум огромный размер генома. А для создания огромной, длинной-предлинной ДНК, в которой были бы прописаны программы для сотен вариантов клеток, нужно огромное количество энергии. Именно поэтому в анаэробные времена о многоклеточности нельзя было даже мечтать, да и аэробные бактерии, хотя и сделали несколько попыток перехода на многоклеточность, так и не сдюжили. Колониальность бактерии ещё смогли освоить, но на большее у них не хватило ни энергии, ни размера генома.
Как вы там, потомки?
Внешний вид и свойства предков многоклеточных мы можем в общем виде представить, изучая современных потомков. В нашем сложном организме есть клетки с ложноножками (например, лимфоциты), есть со жгутиками (волосковые клетки внутреннего уха и сперматозоиды), есть с ресничками (этих и вовсе много, например, в водопроводе мозга, верхнем носовом ходе, трахее и маточной трубе). А ведь геном в каждой клетке один и тот же, значит, предок обладал всеми этими приспособлениями одновременно. Из современных существ подобные универсалы есть в типе Percolozoa и классе Heterolobosea – Naegleria fowleri, а также типе Amoebozoa и классе Archamoebea – Mastigamoeba aspera. Правда, даже у них не бывает одновременно всех трёх типов отростков. Видимо, предок не был увешан и ресничками, и жгутиками, и псевдоподиями зараз, а отращивал их в разные периоды жизни.
Среди современных существ самым примитивным многоклеточным является Trichoplax adhaerens, выделяемый в собственный тип пластинчатых Placozoa. Это абсолютно бесформенное существо выглядит как плёночка – обрывок водоросли. Первый образец был найден на стенке морского аквариума, и для меня останется вечной загадкой – как вообще на такую фигню можно было обратить внимание? Но на то и крутые зоологи – а первооткрыватель трихоплакса Франц Шульце был не просто крутым зоологом, а немецким профессором образца XIX века, – чтобы среди всякого мусора разглядеть уникальных существ и заинтересоваться их строением. У трихоплакса нет ни органов, ни внятных тканей, но есть несколько типов клеток разного назначения, причём не все из них могут размножаться половым путём. Хотя трихоплакс может делиться почкованием (а иногда разные его половины решают ползти в разные стороны, отчего он рвётся пополам), на регенерацию есть определённые ограничения: не каждый оторванный кусочек восстановится как полноценный организм. А это – отличный показатель многоклеточности!
Долгое время трихоплаксы были известны только по образцам из аквариумов, где оказывались случайно, но в последнее время хитрые зоологи наловчились ловить их в морях. Выяснилось, что они не такие уж редкие и однообразные, просто маловыразительные и неприметные. Уже описан новый род и вид Hoilungia hongkongensis, и нет сомнений, что родня будет прибывать и далее.
Примитивность трихоплакса может быть первичной или же вторичной – как результат упрощения. Но в любом случае примерно так должны были выглядеть наши протерозойские предки.
Первые предположительно многоклеточные макроорганизмы обнаруживаются в Китае в формации Чанчэн 1,8–1,65 млрд л. н. – безымянные нитчатые или даже пластинчатые водоросли, впрочем, сомнительные. В США 1,5 млрд л. н. и в Австралии 1,4 млрд л. н. (здесь и далее речь о физической географии) Horodyskia выглядели как извилистые линии загадочных шариков или пузырьков, возможно, связанных между собой общей подземной нитью. В России на Тиманском кряже 1 млрд л. н. Parmia была похожа не то на губку, не то на голотурию и притом её тело было явно сегментировано. В индийских отложениях с датировкой от 1090 до 740 млн л. н. Tawuia dalensis выглядела как замкнутая овальная капсула, а Chuaria circularis – как идеальный круг. Там же и в Северном Китае 840–740 млн л. н. Protoarenicola baiguashanensis, Pararenicola huaiyuanensis, P. fuzhouensis и Sinosabellidites huainanensis вроде бы имели отверстие на конце очень вытянутого тела (а может, на некоторых отпечатках оно просто обломано), внутреннюю полость и тем очень похожи на губок или даже кишечнополостных. Кем были эти создания – непонятно. Водоросли? Колонии грибов? Черви? Размытые отпечатки не дают чёткого ответа. Возможно, мы видим только некоторые части организмов, тогда как другие могли быть скрыты илом или просто не сохраниться.
Забайкальские Udokania выглядят как полые ветвящиеся кальцитовые трубки с септами внутри; есть мнение, что это – домики древнейших стрекающих кишечнополостных. А между прочим, древнейшие удокании жили уже в раннем протерозое и успешно просуществовали до венда.
Всё же относительно некоторых существ у нас уверенности больше. Например, Bangiomorpha pubescens из Канады с датировкой 1,2 млрд л. н. наверняка была древнейшей известной красной водорослью нитчатого типа, в которой клетки следовали друг за другом по цепочке. Предположительно, они были родственны современным бангиевым водорослям Bangiophyceae или, по крайней мере, очень на них похожи. Попозже, очевидно, появились и другие варианты организации таллома – пластинчатые, корковые и кожистые. Планета покрылась водорослевыми лугами и зацвела на новом уровне. Любопытно, кстати, что эти эукариотические сообщества всегда обнаруживаются строго отдельно от прокариотных – строматолитов и прочих подобных.
Jacutianema solubila с датировкой от 800 до 750 млн л. н., предстающая в виде цилиндрических пузырьков, очень похожих на современных вошерий Vaucheriales, вполне может быть жёлто-зелёной водорослью Xanthophyceae. Попозже, около 750 млн л. н. возникают, видимо, и зелёные водоросли Protocladus lingua.
Bangiomorpha pubescens. Красная водоросль
Как вы там, потомки?
Красные водоросли замечательны тем, что, в отличие от прочих растений, имеют насыщенный красный цвет и растут на большой глубине. У красных водорослей есть особый вариант хлорофилла, не встречающийся у других растений, а также есть несколько версий ксантофилла, фикоэритрин и фикоцианин – красный и синий пигменты, известные также у цианобактерий. Красные фотоны низкоэнергетичны и плохо проникают на большую глубину, так что поглощать их не имеет смысла. Остаётся использовать синие фотоны и зелёные. В итоге, красные водоросли на глубине не красные, а бесцветные; когда же мы достаём их на поверхность, где есть красные фотоны, то водоросли вдруг приобретают яркий цвет. Между прочим, эта фишка широко используется глубоководными животными, например, кишечнополостными, для создания невидимости: если быть ярко-красным на большой глубине, где нет красных фотонов, то ничего не отражается, весь свет поглощается, и зверёк становится совершенно невидим – пока мы не вытягиваем его за тентакли на поверхность, где он расцветает багрянцем. Протерозойские красные водоросли могли расти и на мелководье, но в мутных водах условия не особо отличаются от глубоководных, так что красный цвет был тут весьма кстати.
Бангиевые – самые примитивные красные водоросли, среди них встречаются даже одноклеточные формы, а на разных представителях можно наглядно видеть переходы к нитчатой колониальности и многоклеточности в виде широких плоских талломов, в крайних вариантах развивающих даже специальную прикрепительную подошву из множества слившихся ризоидов.
Ещё одно следствие эукариотичности – в большом геноме вероятнее большие нарушения, мутации никто не отменял. При этом клетке с двойной ядерной мембраной уже не так легко хватать чужие гены горизонтальным переносом, а для усложнившейся системы с хитрым биохимическим балансом это и не всегда полезно. Отсюда прямо вырастает необходимость отладки системы рекомбинации генов, то есть их тасования в поисках новых и лучших комбинаций. А это – залог полового размножения. Как обычно, системы комбинаторики возникали неоднократно и параллельно, что мы видим на примере современных живых существ, а у древних наверняка существовали и какието другие, теперь исчезнувшие. Впрочем, эта тема палеонтологически совсем не освещена.
Главное в половом размножении то, что потомство получает два различающихся набора генов (точнее, аллелей – вариантов генов), которые ещё к тому же при образовании половых клеток перемешиваются – рекомбинируют. Два набора генов дают некоторую гарантию: если с одним что-то не так, то на втором можно выехать. Рекомбинация же с помощью кроссинговера (тут многим читателям придётся вспомнить школьный учебник или посмотреть в словаре – эта книга о палеонтологии, все умные слова в ней объяснять невозможно) гораздо лучший способ получения новых генетических вариантов, чем мутагенез. Мутации – это обычно некие нарушения, в лучшем случае они нейтральны, но значимые мутации обычно вредны. Лишь изредка организмам везёт, и в новых условиях среды мутация оказывается полезной. Другое дело – рекомбинация: если уж родители дожили до полового размножения, наверняка с их генами всё более-менее в порядке, а смешение хорошего и хорошего тоже, наверняка даст что-то неплохое (жаль, в кулинарии это правило не всегда работает!).
Маленькая тонкость
Вариантов половых клеток и полового размножения хватает.
Изогамия была типична для первых существ, которые, очевидно, не делились по разным полам; такой вариант до сих пор характерен для многих водорослей.
Гетерогамия, или анизогамия – более продвинутый вариант, когда гаметы похожи по строению (и обычно имеют жгутики), но отличаются по размеру; эта версия существует у бурых и некоторых зелёных водорослей.
Оогамия – вариант, когда гаметы отличаются и по строению, и по размеру; в этом случае мелкие, оснащённые жгутиками, а потому подвижные гаметы считаются мужскими и зовутся сперматозоидами (если жгутик исчезает, то – спермиями), а большие, без жгутиков и неподвижные – женскими яйцеклетками.
Возможны и более редкостные типы перемешивания генетической информации.
Соматогамия – слияние двух вегетативных клеток гаплоидного мицелия – встречается у базидиальных грибов.
Хологамия – слияние целых одноклеточных организмов – у одноклеточных зелёных водорослей и низших грибов.
Конъюгация – временное слияние с обменом участками хромосом – у инфузорий.