Популярно о конечной математике и ее интересных применениях в квантовой теории
Шрифт:
В этом подходе возникает такая проблема. Допустим, у нас есть три частицы, H0 – их свободный гамильтониан, V12 – оператор энергии взаимодействия частиц (1,2) и аналогично, V13 и V23 – операторы энергии взаимодействия частиц (1,3) и (2,3) соответственно. Тогда нельзя, по аналогии с нерелятивистской теорией, считать, что полный гамильтониан равен H=H0+ V12+V13+V23, потому, что это нарушит релятивистские коммутационные соотношения. И Леонид Авксентьевич рассказал, что в ИФВЭ есть такой Соколов, который придумал метод
И для моей работы, важным оказалось то что, как описано в параграфе 9.6, на фундаментальном квантовом уровне симметрия задается не пространством, а алгеброй коммутационных соотношений и на этом уровне никаких пространств и его преобразований нет. Из дальнейшего будет ясно, почему эта идея фундаментальная.
11.2. Симметрия де Ситтера
Еще одна история, которая оказала на меня влияние была такая. У моего тогдашнего завлаба Н.В. Кузнецова была распечатанная статья Дайсона (Dyson) “Missed Opportunities”, название которой было переведено на русский как "Упущенные Возможности". Эта статья была обернута бумагой, на которой была фотография симпатичной девушки в бикини, и Н.В. Кузнецов шутил, что фотография хорошо иллюстрирует название статьи. Насколько я понял, основная идея статьи такая. Dyson занимался и физическими и математическими задачами. Он пишет, что когда он занимался математическими задачами, то у него мозги работали как у математика и он проходил мимо важных физических идей и аналогично когда он занимался физическими задачами, то проходил мимо важных математических идей.
Например, релятивистская теория более общая чем нерелятивистская не только из физических соображений, а просто потому, что группа Галилея – частный случай группы Пуанкаре: группа Галилея получается из группы Пуанкаре контракцией. А группа де Ситтера более общая чем группа Пуанкаре т. к. группа Пуанкаре получается из группы де Ситтера контракцией. А т.к. группа де Ситтера полупростая, то ее уже нельзя обобщить дальше. Казалось бы, из этого должно сразу следовать, что теории претендующие на то, чтобы считаться фундаментальными (например QFT) должны строится на де Ситтер симметрии, а не на Пуанкаре симметрии. Какие-то попытки в этом направлении были. Например, помню, что был на лекции В.Г. Кадышевского в Политехническом Музее, где он говорил, что для де Ситтера расходимости устраняются лучше. Сейчас многие занимаются де Ситтер теорией, но как? Об этом ниже. Но статья Дайсона появилась в 1972 г., т. е. прошло уже более 50 лет, а учебники по QFT по-прежнему исходят из релятивистской инвариантности (т.е., Пуанкаре симметрии) и все самые громкие проекты основаны на этой инвариантности.
Из моих обсуждений с физиками, работающими в частицах, у меня сложилось такое впечатление о вероятной причине. Многие из них знают, что де Ситтер симметрия формально более общая чем Пуанкаре симметрия, и что вторая получается из первой в формальном пределе R->?, где R – это как бы радиус Вселенной. И т. к. этот радиус намного больше размеров элементарных частиц, то они думают, что де Ситтер симметрия может иметь смысл в космологии, а применять ее к частицам совершенно незачем. Однако, более общая теория может пролить совсем другой свет на стандартные понятия и, как описано ниже, в случае с де Ситтер симметрией это действительно так даже в частицах.
Много лет спустя я написал Дайсону, что его статья произвела на меня впечатление, и, в духе этой статьи, конечная математика более фундаментальна чем классическая. Еще, в частности, написал: "Most physicists and mathematicians believe that standard continuum math is fundamental while finite math is something inferior. They do not care much that standard math has foundational problems and even such beautiful minds as Cantor, Godel, Hilbert, Zermelo and many others could not solve them.
I give simple arguments that the situation is the opposite: standard math is only a special case of finite one in the formal limit when the characteristic of the ring or field in finite math goes to infinity. So the foundational problems of standard math are not fundamental. Maybe this is not politically correct to say but I believe that by introducing infinities people created a headache for themselves and now heroic efforts are needed to get rid of this headache”.
Надеялся,
Сейчас пытаюсь вспомнить когда читал эту статью Дайсона. Кажется, это было приблизительно в 1977 г. Эта оценка основана на том, что статью читал в квартире Н.В. Кузнецова в Хабаровске, где он просил пожить на время его отъезда. Я стал жить в Хабаровске после защиты кандидатской в конце 1976 г., а в начале 1978 г. институт дал мне какое-то жилье, так что мне незачем было у кого-то жить. И тогда может возникнуть такой вопрос. Я критикую физиков за то, что они сразу после статьи не перешли с Пуанкаре на де Ситтера, а почему я сам сразу не перешел? Попробую как-то оправдаться.
Раньше думал, что после защиты кандидатской даже не буду пытаться сделать докторскую. а буду заниматься чем хочу. Когда кандидат наук получал должность старшего научного сотрудника (с.н.с), его зарплата в Хабаровске была 360 рублей в месяц т.к. базовая зарплата была 300 и дальневосточный коэффициент был 1.2. На такие деньги вполне можно было хорошо жить и ни о чем не думать. Но Н. В. Кузнецов не хотел давать мне с.н.с и, кроме того, жизнь стала ухудшаться. Поэтому стал думать о том, что докторскую делать придется. И т. к. жил далеко от Москвы, то возможности контактов с учеными были ограничены, и я решил, что единственной реальной возможностью для меня сделать докторскую была теория релятивистских прямых взаимодействий, о которой писал выше. На это уходило почти все время и поэтому серьезно заниматься чем-то другим не получалось.
Но дополнительный толчок к де Ситтеру дал разговор с моим родственником и тогдашним начальником Эдиком Мирмовичем. Как-то он рассказал мне о своей идее, что фундаментальными физическими величинами являются угловые моменты. Я пытался понять, что он имел в виду. Помню я ему сказал, что в группе Пуанкаре 10 генераторов, из них 6 описывают обычные и Лоренцевские вращения, но остальные 4 – энергия и импульс – уже не вращения. Спросил, имел ли он в виду де Ситтера. Здесь все 10 генераторов – угловые моменты. Из них 6 – такие же как в Пуанкаре, а остальные 4 при контракции де Ситтера в Пуанкаре переходят в энергию и импульс. Так что на квантовом уровне эта идея – как раз то, что написано в статье Дайсона.
После этого разговора, у меня появилась надежда, что удастся заниматься де Ситтером не только в свободное от работы время, но и в рабочее время. Увы, это оказалось только надеждой и не буду описывать почему. Но удалось опубликовать несколько статей в журнале Journal of Physics A: Mathematical and General, который тогда был очень приличным, а теперь стал кондовым (см. ниже). Пожалуй, наиболее важный результат такой. В духе знаменитой работы Вигнера, элементарные частицы описываются неприводимыми представлениями группы симметрии. Т.е., в Пуанкаре инвариантной теории это представления группы Пуанкаре, а в де Ситтер инвариантной теории – представления группы де Ситтера. Еще более точно, в духе идеи Л.А. Кондратюка, надо рассматривать не представления групп, а представления соответствующих алгебр Ли.