Популярно о конечной математике и ее интересных применениях в квантовой теории
Шрифт:
Большим событием в физике частиц был результат Дирака, что его уравнение имеет решение как с положительными так и с отрицательными энергиями. Этот факт интерпретировался как существование античастиц и действительно, вскоре был найден позитрон. Но здесь возникают такие противоречия.
Если m – масса частицы, а p – ее импульс, то энергия определяется как ?(p)=(m2+p2)1/2, причем, с чисто формальной точки зрения, знак корня может быть как положительным так и отрицательным. Но этот знак должен быть одинаковым для всех частиц. Действительно, рассмотрим систему двух частиц, у которых массы одинаковые, а импульсы p1 и p2 такие,
Другим противоречием является следующее. Так как уравнение Дирака линейное, то суперпозиция решений с положительными и отрицательными энергиями тоже является решением, и это соответствует принципу суперпозиции в квантовой теории. Но из требования сохранения заряда, следует, что суперпозиция электронных и позитронных состояний запрещена.
Эти противоречия решают при помощи вторичного квантования. Но тогда возникает такая проблема. Квантованное поле ?(x) является оператором в Фоковском пространстве состоящим из бесконечного числа частиц. Каждая частица имеют свои координаты (в приближении когда операторы таких координат существуют). Поэтому аргумент функции ?(x) не относится ни к какой частице, это просто чисто формальный параметр возникший из вторичного квантования неквантованного поля ?(x). Поэтому аргумент даже нельзя назвать координатой, это просто параметр интегрирования когда лагранжиан записывается как интеграл от полей. То есть в квантовом случае аргумент не имеет физического смысла. Но все равно физики думают, что аргумент имеет смысл координаты (правда, непонятно чего).
В QFT, полевые функции ?(x) входят только в интегралы от Лагранжиана по d4x для S-матрицы, то есть x – это только параметр интегрирования и нет физических величин зависящих от x. Цель QFT – вычислить S-матрицу в импульсном представлении, и все наблюдаемые величины в QFT определяются S-матрицей. Когда S-матрица вычислена, мы можем забыть про x. Это соответствует S-матричной программе Гайзенберга, что в квантовой теории нельзя описывать состояния в каждый момент времени t, а смысл имеет только описание преобразования от бесконечно далекого прошлого t– >– ? до бесконечно далекого будущего t– >+?. Тот факт, что S-матрица вычисляется в импульсном представлении, не означает, что в QFT не может быть координатного описания. Оно имеется в приближении когда для каждой частицы имеется оператор координаты в импульсном представлении.
Суммируя обсуждение в этом и предыдущем параграфах, отметим следующее. QFT покоится на двух китах указанных в 1) и 2). То что 1) не является фундаментальным физическим требованием, отмечено в предыдущем параграфе, а в этом параграфе объяснено, что понятие квантованных полей на background space тоже не является фундаментальным. Понятие background space возникло из классической теории поля, а для квантованных полей оно не имеет физического смысла так как аргумент x в квантованных полях не относится к какой-либо частице и поэтому не имеет физического смысла. Нет физического закона, что S-матрица обязательно должна определяться интегралами по d4x от квантованных полей ?(x). Исторически сложилось так, что QFT с такими интегралами хорошо описывает многие экспериментальные данные, но, как описано ниже, такая теория также имеет фундаментальные проблемы. Поэтому нет причин думать, что ultimate quantum theory будет основана на QFT. Этот вопрос обсуждается в следующем параграфе.
9.7. Успехи и проблемы QFT
Как объяснено выше, теория основанная на 1) и 2) не может быть фундаментальной. Но, кроме этой проблемы, в QFT возникает следующая. Теория основана на локальных квантованных полях, которые перемножаются в одной точке. Как правило, физиков не волнует то, что, как отмечено, например, в книге Боголюбова с соавторами [6], ?(x) является обобщенной функцией, а, как известно из теории таких функций, их нельзя перемножать в одной точке. Но многие физики об этом даже не задумываются и перемножают, чтобы, как они думают, сохранить локальность, хотя, как отмечено выше, x не относится
Можно сказать, что идеальная наука не должна исходить из такой математики. Но здесь возникает убийственный аргумент: с такой математикой теоретический результат для магнитных моментов электрона и мюона согласуется с экспериментом с точностью 8 знаков, Лэмбовский сдвиг – с точностью 5 знаков и т.д. Ни в какой области науки такого согласия теории и эксперимента нет.
Эти результаты были получены в квантовой электродинамике (которую в физической литературе называют QED – quantum electrodynamics) в конце 40х годов, и те, кто ее сделали (Feynman, Schwinger, Tomonaga, Bethe, Karplus, Klein, Kroll, Sommerfield и др.) производят впечатление даже не людей, а сверхчеловеков. Но все же, хотя история не знает сослагательного наклонения, позволю себе задать крамольный вопрос: то, что эти потрясающие результаты были получены оказалось хорошо для науки или нет? Во-первых, эти результаты сразу убедили многих, что строгая математика ни к чему, а главное – чтобы хорошо описывался эксперимент. Во-вторых, многие решили, что теперь вся релятивистская квантовая теория может быть сделана по аналогии с QED. Однако, несмотря на потрясающее согласие с экспериментом, эти результаты вряд ли можно считать фундаментальными. Они получены, исходя из того, что постоянная тонкой структуры ? мала (она примерно равна 1/137). Поэтому можно применять теорию возмущений по ?. Результат для аномальных моментов электрона и мюона получается при учете поправок вплоть до ?3 включительно. Но в теориях, где константа взаимодействия большая, надо или работать без теории возмущений или вычислять весь ряд теории возмущений, что нереалистично (и к тому же непонятно, сходится ряд или нет).
После такого триумфа физики пытались рассмотреть другие теории по аналогии. В предыдущем параграфе я отметил проблемы с классическим и квантовым полем ?(x), с интерпретацией аргумента этой функции, с уравнением Дирака и т.д. К концу 60х годов возникло мнение, что надо что-то менять. Weiskopf написал, что квантовая теория поля должна быть похоронена со всеми почестями. В 1968 г. вышел 4й том Курса Теоретической Физики, который написали Берестецкий, Лифшиц и Питаевский. В вводной главе они объяснили, что, если объединить квантовую теорию с релятивизмом, то даже координата сама по себе не может быть точно измерена, а в главе II написали: "Следует подчеркнуть вспомогательный характер понятия поля свободных частиц".
Но, несмотря на эти проблемы, QFT восстала из пепла: в 70х годах создали квантовую хромодинамику, в 1981м нашли W и Z бозоны и, наконец, создали Стандартную Модель. В ней, исходя из 20 параметров, описывают многие экспериментальные данные из физики частиц. Модель не решила ни одной принципиальной проблемы QFT. Она по-прежнему исходит из лагранжиана, в котором поля перемножаются в одной точке. Еще когда я учился в ИТЭФе, все знали крылатую фразу К. А. Тер-Мартиросяна, что если теория содержит 25 свободных параметров и описывает 1000 экспериментальных данных, то это хорошая теория. Так что в такой философии Стандартная Модель – большое достижение.
Теперь на дворе 2023й год и можно ли сказать, что есть какой-то прогресс в создании единой теории? Мне кажется, что, опять настал такой период когда, по аналогии с концом 60х, стало ясно, что единая теория не может быть построена на идеях QFT. Была большая шумиха, что теория струн станет TOE. Выше я приводил аргументы, что это очень сомнительно. В духе приведенной выше фразы Бора можно сказать, что теория струн не является достаточно сумасшедшим обобщением QFT. Одна из ее идей такая, что т. к. струнные поля перемножаются не в точке (нульмерный объект), а на струне (одномерный объект), то есть надежда, что сингулярности «размажутся» и с ними можно будет работать. Однако, с точки зрения математики, перемножение на струне тоже не является корректной операцией и в теории струн проблема бесконечностей тоже не решена.
В связи с теорией струн вспоминается известная фраза, что можно обманывать много людей в течение короткого времени или мало людей в течение длительного времени, но нельзя обманывать много людей в течение длительного времени. Мне кажется, что теория струн опровергла это утверждение т.к. ей удалось обманывать много людей в течении длительного времени. Во многие кафедрах физики стало невозможно получить работу, если не занимаешься струнами. Как сказал Dyson, если раньше, чтобы показать, что кафедра занимается фундаментальными проблемами, надо было делать дорогостоящие эксперименты, то теперь вместо этого достаточно взять одного-двух струнщиков.