Популярно о конечной математике и ее интересных применениях в квантовой теории
Шрифт:
Если бы классическая математика правильно описывала все эксперименты, то, наверное, можно было примириться с тем что есть теоремы Гёделя и надеяться, что рано или поздно их можно будет обойти и выполнить программу Гильберта. Но развитие квантовой теории показало, что в рамках классической математики возникают большие проблемы в построении того что называют ultimate quantum theory. Главная проблема – что в теории возникают бесконечные выражения. В перенормируемых теориях (например, в квантовой электродинамике, квантовой хромодинамике и электрослабой теории) бесконечности можно устранить, умножая одну сингулярность на другую. Но, например, квантовая гравитация, основанная на квантовой теории поля является неперенормируемой теорией
Как пишет знаменитый физик и лауреат Нобелевской премии Weinberg о проблеме бесконечностей в своем учебнике [3]: “Disappointingly this problem appeared with even greater severity in the early days of quantum theory, and although greatly ameliorated by subsequent improvements in the theory, it remains with us to the present day". Название статьи Weinberg [4]: "Living with infinities".
9.6. О квантовой теории поля
Квантовая теория поля (которую в литературе называют QFT – quantum field theory) не имеет аналогов в истории науки т.к., с одной стороны, она описывает некоторые данные с поразительной точностью, а с другой основана на некорректной математике. Эта теория основана на двух главных принципах: 1) она исходит из классической математики; 2) она исходит из понятия квантованного поля на пространстве-времени. В предыдущем разделе я приводил аргументы, что самая фундаментальная квантовая теория не может исходить из 1). А сейчас приведу аргументы, что такая теория также не может исходить из 2).
Что такое классическая теория поля? Рассмотрим, например, классическую электродинамику. Она описывает классическое электромагнитное поле функциями
E(t,x) и B(t,x), где (t,x), – координаты пространства Минковского. В природе никаких пространств нет; есть только частицы и когда их много, то возникает иллюзия, что они в каком-то пространстве. В частности, пространство Минковского – только чисто математическое понятие. Мы знаем, что электромагнитное поле состоит из фотонов. В приближении когда оператор координаты работает, каждый фотон имеет свои координаты. Но в классической электродинамике каждый фотон по отдельности не рассматривается, а все фотоны вместе описываются функциями E(t,x) и B(t,x). Это аналогично тому, что статистическая физика не рассматривает каждую частицу в отдельности, а описывает ансамбли из многих частиц функциями (температурой, давлением и др.) которые не имеют смысл для каждой частицы. Ясно, что такое описание может быть лишь приближенным.
Теперь обсудим QFT. В квантовой теории есть информация о каждой отдельной частице. В частности, в приближении когда оператор координаты работает с хорошей точностью, каждая частица описывается своей координатой. В этом приближении волновая функция системы N частиц описывается волновой функцией ?(x1, x2…xN) и нет координаты x общей для всех частиц.
В учебниках по QFT логика такая: т.к. специальная теория относительности сделана на пространстве Минковского, а группа Пуанкаре является группой преобразований этого пространства, то в квантовой теории преобразования должны описываться представлениями группы Пуанкаре, а значит генераторы таких преобразований должны удовлетворять коммутационным соотношениям алгебры Ли группы Пуанкаре. Такой подход
Здесь есть такая аналогия с ситуацией ОТО. Эрлангенская Программа была предложена еще раньше чем ОТО – в 1872 г., когда квантовой теории не было и в помине. Но, как отмечено выше, с точки зрения квантовой теории, понятие background space не имеет смысла так как нет координаты x общей для всех частиц. Но это понятие по-прежнему широко используется в так наз. фундаментальных квантовых теориях – QFT и string theory.
Мой научный руководитель Леонид Авксентьевич Кондратюк объяснил мне, что логика должна быть противоположная той, которая применяется в духе Эрлангенской Программы. То, что обычно называют генераторами – это как раз и есть основные физические операторы – энергия, импульс, операторы угловых и Лоренцевых угловых моментов. Симметрия Пуанкаре не потому, что есть пространство Минковского (которое является чисто классическим понятием), а потому, что основные физические операторы удовлетворяют коммутационным соотношениям алгебры Пуанкаре и поэтому на классическом уровне (и только на этом уровне) возникают преобразования и пространство Минковского.
Т.е., на фундаментальном квантовом уровне симметрия задается не пространством, а алгеброй коммутационных соотношений и на этом уровне никаких пространств и его преобразований нет. Они возникают только в классическом приближении т.к. в этом приближении пространство появляется не как абстрактное пустое пространство, а как пространство событий для тел. Может быть, эта идея неявно есть в статье Дирака [5], но там она не сформулирована так явно как у Леонида Авксентьевича. Когда позже я познакомился со Скиффом Николаевичем Соколовым, то он тоже сказал, что пришел к такой идее.
В QFT элементарные частицы описываются неприводимыми представлениями алгебры Пуанкаре. В таком описании, координат и пространства Минковского вообще нет, а есть только импульсы, угловые моменты и спины. При этом, имеется вероятностная интерпретация так как операторы физических величин являются самосопряженными операторами. Но, как доказано в теории представлений, с математической точки зрения часто имеется соответствие между представлениями некоторой алгебры Ли самосопряженными операторами и унитарными представлениями группы Ли соответствующей этой алгебре.
Но в QFT рассматривается также описание частиц при помощи полевых функций ?(x)= ?(t,x) удовлетворяющих ковариантным уравнениям (Дирака, Клейна-Гордона и др.) на пространстве Минковского. Такие функции возникают из неунитарных представлений группы Пуанкаре индуцированных из неунитарных представлений группы Лоренца, а зависимость таких функций от (t,x) возникает из-за того, что пространство Минковского является фактор-пространством группы Пуанкаре по группе Лоренца. В связи с тем, что такие представления неунитарны, возникает проблема с их вероятностной интерпретацией.
Паули показал, что для уравнений, описывающих поля с полуцелым спином, нет инвариантных подпространств в которых для всех состояний знак энергии одинаковый, а для уравнений, описывающих поля с целым спином нет инвариантных подпространств в которых для всех состояний знак заряда одинаковый. Поэтому неквантованные поля описывающие частицы не имеют физического смысла. Кроме того, так как для полей ?(x) нет вероятностной интерпретации, то координаты x не являются операторами каких-либо физических величин. Большой успех уравнения Дирака в том, что в приближении (v/c)2 уравнение описывает с большой точностью тонкие уровни атома водорода. Но, в более высоких приближениях оно не работает. Например, оно не может описать Лэмбовский сдвиг.