Программирование на языке Пролог для искусственного интеллекта
Шрифт:
Рис. 14.16. Определение степени правдоподобия гипотезы при помощи распространения
14.7. Заключительные замечания
Нашу оболочку экспертной системы можно развивать в целом ряде направлений. В данный момент уместно сделать несколько критических замечаний и высказать предложения по усовершенствованию нашей программы.
В нашей программе, являющейся упрощенной реализацией, не уделено достаточного внимания вопросам эффективности. В более эффективной реализации потребовалось бы использовать более сложные структуры данных, ввести индексирование или иерархическую структуризацию множества правил и т.п.
Наша процедура
Наше объяснение типа "как" выводит дерево доказательства целиком. В случае больших деревьев, удобнее было бы вывести только верхнюю часть дерева, а затем дать пользователю возможность "гулять" по остальной части дерева по своему желанию. Тогда пользователь смог бы просматривать дерево выборочным образом, используя команды, такие как "Вниз по ветви 1", "Вниз по ветви 2", …, "Вверх", "Достаточно".
В объяснениях типа "как" и "почему" наша оболочка ссылается на правила, указывая их имена, и не показывает их в явном виде. Необходимо, чтобы во время консультационного сеанса пользователь мог, по желанию, запрашивать те или иные правила и получать их явные изображения.
Известно, что придать диалогу с пользователем естественный характер при помощи умелой постановки вопросов - сложная задача. Наш способ ее решения работает только в определенных пределах и во многих случаях приводит к самым разным проблемам, например:
Конечно же нет, раз она совсем не летает! Другой пример:
Для того, чтобы справиться с подобными нежелательными эффектами, следует ввести в экспертную систему дополнительные отношения между понятиями вместе с механизмами их обработки. Обычно эти новые отношения задают иерархию объектов и их свойств.
Возможно еще одно усовершенствование процедуры взаимодействия с пользователем, предусматривающее планирование оптимальной стратегии постановки вопросов. Целью оптимизации является минимизация
Существует еще одна величина, поддающаяся оптимизации: длина цепочки вывода. Такая оптимизация позволила бы давать более простые объяснения типа "как". Сложность объяснений можно также уменьшить за счет селективного подхода к правилам. Некоторые из правил можно было бы не включать в состав объектов
В "разумной" экспертной системе следует предусмотреть вероятностные механизмы, заставляющие ее концентрировать свое внимание на наиболее правдоподобных гипотезах среди всех конкурирующих между собой гипотез. Такая экспертная система должна запрашивать у пользователя ту информацию, которая позволила бы распознать наилучшую среди наиболее правдоподобных гипотез.
Наша экспертная система была классификационного или "анализирующего" типа, в противоположность системам "синтезирующего" типа, в которых ставится задача построить что-либо. В последнем случае результат работы - это план действий, предпринимаемых для выполнения этой задачи, например план действий робота, компьютерная конфигурация, удовлетворяющая заданным требованиям, или форсированная комбинация в шахматах. Наш пример, относящийся к локализации неисправностей, можно естественным образом расширить, чтобы включить в рассмотрение действия. Например, если система не может прийти к определенному выводу, поскольку приборы выключены, она даст рекомендацию: "Включить лампу 3". Здесь сразу возникнет задача построения оптимального плана: минимизировать число действий, необходимых для достижения окончательного вывода.
Завершите программирование нашей оболочки в части, касающейся неопределенной информации (процедура
Рассмотрите перечисленные выше критические замечания, а также возможные расширения нашей экспертной системы. Разработайте и реализуйте соответствующие усовершенствования.
Резюме
• Обычно от экспертных систем требуют выполнения следующих функций:
решение задач в заданной предметной области,
объяснение процесса решения задач,
работа с неопределенной и неполной информацией.
• Удобно считать, что экспертная система со стоит из двух модулей: оболочки и базы знаний. Оболочка в свою очередь состоит из механизма логического вывода и интерфейса с пользователем.
• При создании экспертной системы необходимо принять решения о выборе формального языка представления знаний, механизма логического вывода, средств взаимодействия с пользователем и способа работы в условиях неопределенности.