Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Каким преобразованиям должны подвергаться переменные? Нужно ли обращаться к сопряженным преобразованиям переменных, скажем, имея дело с численностью и биомассой, переходить к их отношению или к извлечению корня квадратного из их произведения? Уместно ли обращаться к 2 метрике? Разумно ли переходить от непосредственно измеряемых переменных хi, хj к параметрам, связывающим их формулой аллометрического роста:

хi = ахjb.

Параметры a и b мы можем рассматривать как новые косвенно изменяемые величины. Они, кажется, имеют все же четкую биологическую интерпретацию [93] . Здесь может быть поставлен и такой

вопрос: как может быть геометризировано собственно биологическое время и какова его связь с астрономическим временем? Это новые для биологов проблемы. В плане общетеоретическом они могут рассматриваться как прямое следствие представления эволюционизма в терминах силлогизма Бейеса. Но в плане практическом – и об этом не надо забывать – они возникли в результате соприкосновения биологической науки с компьютерной техникой. И со всей серьезностью нужно подчеркнуть, что если поставленные здесь проблемы не будут решены, если природа биопространства не будет осмыслена, то обращение биолога к компьютеру будет выдавать произвольные, не содержательные результаты. Интересно обратить внимание на то, что здесь мы впервые подходим к философски звучащему вопросу о роли наблюдателя в биологическом исследовании. Оказывается, что биологическое пространство – это та новая биологическая реальность, которая не существует сама по себе, она появляется только в результате взаимодействия исследователя с природой. Здесь возникает некоторая, хотя, может быть, и отдаленная параллель с представлением о роли наблюдателя в современной физике.

93

В работе [Коростышевский, Эппель, 1979] отмечается, что параметр b есть отношение чувствительности подсистем хi и хj к управлению, а параметр a зависит от начальных условий, т. е. от соотношения подсистем к моменту формирования структуры управления в онтогенезе. Правда, при этом надо все же всегда учитывать и то обстоятельство, что закон аллометрического роста задается только аппроксимационными формулами.

Наш метрический подход к геометризации биологии можно, в плане историческом, противопоставить хорошо известному подходу Н. Рашевского [94] . Рассматривая возможность построения теоретической биологии как абстрактной дисциплины, он обращается к топологии, полагая, что в живой природе, в отличие от неживой, характерной чертой организации являются не метрические отношения, а непрерывные преобразования объектов друг в друга [Rashevsky, 1954]:

В то время как физические феномены являются манифестацией метрических свойств четырехмерного универсума, биологические феномены, возможно, способны отражать некоторые локальные топологические свойства этого универсума (с. 317).

Топологические пространства или комплексы, которыми представлены различные организмы, все получены из одного или лишь немногих изначальных пространств или комплексов путем одной и той же трансформации, содержащей один или более параметров, разным значениям которых соответствуют различные организмы (с. 325).

94

Сам Рашевский зарождение своих идей связывает с упоминавшейся ранее работой [Thompson D’A. W., 1942], а также с методологическими соображениями, правда, достаточно общего характера, развиваемыми в книге К. Левина [Lewin, 1936], посвященной возможности применения топологического подхода в психологии.

Однако при таком подходе, как на это обратил внимание И.А. Акчурин [1974], возникает трудность, связанная с необходимостью жесткой геометрической локализации:

…в науке о живом такое, на первый взгляд, «невинное» предположение, как неявная обычно гипотеза о представимости всех объектов теории множествами, уже почти автоматически влечет за собой отказ от такой определяющей черты всего живого, как свобода, непредсказуемость его действий, и подмену биологического существа какой-то жестко детерминированной схемой (с. 109).

Почти одновременно с Н. Рашевским его ученик Р. Розен стал развивать, пожалуй, еще более утонченный подход. В работе [Rosen, 1958 а] он применяет топологические соображения к рассмотрению организма в целом (интересным откликом на нее является заметка [Rashevsky, 1958]). В следующей работе [Rosen, 1958 b] он вводит понятие абстрактной биологической системы, имеющей вход и выход. К таким системам относятся как организм, так и его отдельные органы. Элементы таких систем селективно реагируют на каждый вход. Опираясь на математическую теорию категорий и функторов [95] , Розен рассматривает некоторые аспекты общей теории биологических систем – его подход оказывается близким к общей теории автоматов.

95

Категория и связанное с ней понятие функтор являются понятиями

современной алгебры, имеющими приложение и в других разделах математики.

Категория есть некая совокупность объектов, такая, что вместе с каждой парой объектов А и В ей принадлежит и совокупность морфизмов из А и В. Морфизмами могут быть произвольные отображения одного множества в другое. Функтор – переход одной категории в другую, при котором сохраняются тождества и композиции морфизмов.

Мы не можем здесь останавливаться на дальнейшем развитии идей Рашевского и Розена. Обзор работ последнего дан в статье [Рощин, 1982], помещенной в книге [Левич, 1982]; в библиографии, приведенной в этой книге, дан список публикаций Рашевского и Розена, посвященных попытке математического осмысления теоретической биологии. Их подход, насколько мы можем судить, все же оказался отторгнутым биологической мыслью. Во всяком случае эти имена не упоминаются в книге Мейера [Мауег, 1982], нацеленной на всестороннее освещение развития биологической мысли. Не обнаружили мы ссылок на эти имена и в достаточно математизированном четырехтомнике под редакцией Уоддингтона [Waddington, 1968, 1969, 1970, 1972]. И все же мы должны высоко оценить мысль Рашевского о том, что именно геометризация физики [96] открывает перспективу геометризации биологии [Rashevsky, 1956].

96

В последующих работах Рашевский снимает резкое противопоставление в осмыслении задач физики, с одной стороны, и с другой стороны – задач биологии и социологии [Rashevsky, 1967].

Геометризация — это всегда сведение представлений о Мире к геометрической локализации. История развития физики в какой-то степени есть история изменений представлений о локализации. В классической механике речь шла о Декартовой пространственной локализации точки, движущейся во времени. Введение в физику поля породило представление о непрерывной размазанности в пространстве некоего физического показателя. В микромире локализация перестает быть жестко фиксированной (принцип неопределенности Гейзенберга, уравнение Шрёдингера). В современной физике есть тенденция углубить представление о локализации через введение в рассмотрение топосов — пространств с флуктуирующей топологией: вариабельной становится сама окрестность точки. В нашей постановке задачи мы обращаемся к вероятностному пространству, и это радикальным образом меняет само представление о локализации. Морфофизиологическое поле содержит все – но этому всему в различных его участках придаются различные меры, связанные между собой условиями нормировки. Быть локализованным в вероятностном смысле – значит иметь меру локализации. Речь идет не о фиксировании локализации через бинарное отношение да – нет, а о проявленности через меру всего, что есть исконное – вневременное. Все существует в соизмеримой проявленности сущего. Отсюда и та гибкость в описании эволюционного процесса, которую мы пытаемся продемонстрировать.

Гибкость здесь как раз и порождается той легкостью варьирования мерой, которая допускается представлением о вероятностном пространстве. Именно в силу этой гибкости в нашем подходе снимаются все те неприятности, связанные с жесткой локализацией в геометризации Рашевского, на которые обратил внимание Акчурин.

6. Собственное время как мера изменчивости

Моделирование экосистем в условиях сильного антропогенного воздействия научило многому: квазиэволюционные процессы теперь происходят на глазах исследователей. Стало очевидным, что состояние экосистемы может изменяться скачкообразно. Биологическое пространственно-временное многообразие предстает перед нами как недифференцируемое или, по крайней мере, локально недифференцируемое, отсюда и неуместность моделирования с помощью дифференциальных уравнений. Эти представления перекликаются с палеонтологическими наблюдениями. Вот что по этому поводу пишет С.В. Мейен [1981]:

…изучая прошлое Земли, мы оказываемся практически без часов (с. 150).

О геологическом времени, говорит он далее, можно судить только по изменчивости изучаемых объектов, но при этом

…наблюдатель отмечает, что изменчивость объектов различна, так как различны процессы, происходящие с объектами. В соответствии с классами объектов можно выделить классы процессов и тем самым классы времен (с. 151).

Уместно здесь привести и краткие высказывания Г. Патти об особенностях биологического времени [1970 б]:

Множественность временных шкал, несомненно, представляет собой важнейший аспект жизни. Физика обычно использует только одну временную шкалу (если не считать некоторых областей нелинейной термодинамики)… Например, существует физическое время (в уравнениях движения), каталитическое время (необходимое для описания ферментативных реакций), время клеточного деления, время индивидуального развития, время генерации, время экологической сукцессии и, наконец, эволюционное время. Может быть, следует добавить еще психологическое время, или время сознания (с. 178).

Поделиться:
Популярные книги

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2

Первый среди равных

Бор Жорж
1. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Не отпускаю

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
8.44
рейтинг книги
Не отпускаю

Вечный. Книга VI

Рокотов Алексей
6. Вечный
Фантастика:
рпг
фэнтези
5.00
рейтинг книги
Вечный. Книга VI

Идеальный мир для Социопата 7

Сапфир Олег
7. Социопат
Фантастика:
боевая фантастика
6.22
рейтинг книги
Идеальный мир для Социопата 7

Вираж бытия

Ланцов Михаил Алексеевич
1. Фрунзе
Фантастика:
героическая фантастика
попаданцы
альтернативная история
6.86
рейтинг книги
Вираж бытия

Жена проклятого некроманта

Рахманова Диана
Фантастика:
фэнтези
6.60
рейтинг книги
Жена проклятого некроманта

Солдат Империи

Земляной Андрей Борисович
1. Страж
Фантастика:
попаданцы
альтернативная история
6.67
рейтинг книги
Солдат Империи

Афганский рубеж 2

Дорин Михаил
2. Рубеж
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Афганский рубеж 2

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Дикая фиалка Юга

Шах Ольга
Фантастика:
фэнтези
5.00
рейтинг книги
Дикая фиалка Юга