Репортаж с ничейной земли. Рассказы об информации
Шрифт:
Значит, информация зависит здесь не только от того, как чередуются события, которые он наблюдает, но и от того, что он знает о характере этих событий.
Вы улавливаете, где возникает «двойственность» информации?
– Пытаюсь. Будем говорить так: существует объективная неопределенность движения, например в опыте с шарами есть неопределенность чередования черных и белых шаров. А в тексте есть неопределенность появления буквы: буквы сто... могут оказаться и столом и стоном, потому что после сочетания сто... может появиться много различных букв. Все это не зависит от наблюдателя, эти явления объективны. Но, кроме того, существует и другая неопределенность - неопределенность его представлений.
Я правильно уловил вашу мысль?
–
– Но в тексте есть и порядок. Мы можем оценить его вероятностью. Если мы обозначим Pавероятность появления буквы а, то можем сказать, что Pа много больше, чем Pю или Pщ. И еще есть корреляция: после букв ею буква щ появится чаще, чем а. Если подсчитать информацию с учетом всего существующего в тексте порядка, то окажется, что каждая буква несет информацию немного большую, чем 1 бит. А если считать, что каждая из 32 букв алфавита имеет равную вероятность, получим, что в каждой букве содержится ровно 5 бит. Так сколько же информации несет в себе каждая буква - 1 или 5 бит? Все зависит от того, кто прочтет эту букву. Если наш наблюдатель изучил вербятность и корре- 235 ляцию букв русского текста, он получает от буквы всего 1 бит. А теперь представьте себе, что он иностранец, впервые встретивший русский текст. Он не знает алфавита, он даже не может отличить гласную от согласной. Он знает лишь, что в алфавите есть 32 различные буквы. Телеграф сообщает ему эти буквы, и он старательно записывает непонятный текст. Несмотря на то, что в движении букв существует порядок, для него каждая буква содержит ровно 5 бит. Кажется, так обстоит дело?
– Да, да, - кивает профессор.
– Все, о чем вы сейчас говорили, можно свести к одной простой формуле. Вот она: I = 0 + n.
I - это количество информации;
0 - это объективная неопределенность движения;
n - неопределенность представлений того, кто это движение наблюдает.
Теперь смотрите, как просто обстоит дело. Пока наблюдатель считает, что все буквы имеют равную вероятность, неопределенность n велика. В этом случае I составляет 5 бит. Но вот наблюдатель стал изучать, как чередуются букву, и неопределенность его представлений начала уменьшаться. Он учел вероятность от Pа до Pя, подставил их в формулу Шеннона и получил, что I = 4 бита.
Это все то же свойство формулы I = Pilog Pi: появились разные вероятности, уменьшилось I.
Потом он уловил, что буквы связаны между собою, и стал учитывать вероятность появления каждой буквы с учетом трех предыдущих букв. Неопределенность его представлений (n) стала еще меньше, и потому величина I уменьшилась до 3 бит.
Теперь предположим, что он изучил все возможные сочетания, учел корреляцию всех слов и букв.
Он знает теперь все законы, которым подчиняются буквы текста, - неопределенность его представлений стала равна нулю. А буквы все следуют друг за другом, на телеграфной ленте появляется все новый и новый текст. Несет ли он новую информацию? Безусловно. Прочитав этот текст, наблюдатель узнает много всяческих новостей. Почему? Потому что в тексте есть объективная неопределенность движения. Если бы ее не было, текст не нес бы нашему наблюдателю никаких новых сведений: ведь он заранее мог бы предвидеть появление всех букв и слов.
Но есть объективная неопределенность, и та информация, которую получает наш наблюдатель, зависит теперь от нее: I = 0, потому что n стало равно нулю.
Наблюдая любое явление, человек всегда стремится устранить неопределенность своих представлений об этом явлении. Чтобы изучить порядок движения, существующего в любом физическом теле, он должен получить такое количество информации, которое существует в этом движении.
Как будто все не так уж и сложно, и тем не менее как много неясностей вносит в науку об информации этот назойливый наблюдатель! Только он появляется, всплывает- куча вопросов. Что ему известно заранее? Будет ли он принимать во вни- 237 мание новые сообщения, имеют ли они для него ценность?
Да, представьте
С помощью камеры Вильсона13 получена фотография со следами пролетавших частиц. Эти следы содержат в себе информацию: они связаны с движением, которым живет этот мир. Наблюдая это движение, физик может открыть новую закономерность.
А теперь представьте себе, что во время этого опыта в гости к физику зашел приятель - профессиональный музыкант. Он равнодушно взглянул на снимок и отошел в сторону, поджидая, когда физик закончит свои дела. Он не заметил, что физик сильно взволнован: только что получена информация, на базе которой можно проделать новый интересный расчет. Но та информация, которая волнует физика, недоступна для музыканта, и потому, взглянув случайно на фотографию, он увидел лишь путаницу линий, не гово рящих ему ни о чем.
Внезапно в окна лаборатории проникли посторонние звуки: в соседнем доме включили приемник.
Увлеченный расчетами физик не узнал в этих звуках симфонии Моцарта. Зато его приятель в бушующем море звуков уловил, как в момент четвертого такта сфальшивил нежный гобой. Вот вам, пожалуйста, в обоих случаях есть сигналы, но одному наблюдателю они несут информацию, а для другого это всего лишь «пустой звук».
И вот, чтобы сбросить с себя иго капризного наблюдателя, мы с Быстровым, не сговариваясь, пошли на одну и ту же хитрость: мы просто перестали его замечать. Мы стали рассматривать все явления, не обращая внимания на его отношение к этим явлениям, не интересуясь даже вопросом, знает ли он о них. И тогда оказалось, что во всех существующих в мире системах происходит одно и то же: если система хранит информацию, значит ее элементы, двигаясь, сохраняют порядок. Так ведут себя автоматы, так бегут электроны по цепям вычислительной машины, так движутся молекулы в кристаллической решетке твердого вещества. Да и сам наблюдатель - это тоже система, только очень сложная и капризная. Но если отбросить капризы, то в общем-то и он подчиняется тем же законам: мозг его хранит информацию, потому что в нем существует движение импульсов, сохраняющих строгий порядок. И чем больше накопит он сведений, тем больше порядка будет в движении, рождающем мысль.
Так обстоит дело, если, отбросив субъективное мнение наблюдателя, научиться видеть в явлениях их объективную закономерность. Тот, кто умеет материалистически оценивать явления, никогда не повторит ошибки, которую допустил Бриллюэн. Он говорил: «Энтропия есть мера недостатка информации о действительной структуре системы».
Вы чувствуете, что в этой формулировке незримо присутствует наблюдатель? Если бы его не было, кто бы мог судить о структуре? Это он испытывает «недостаток», это он не знает, какова действительная структура системы.
Английский ученый Джон Пирс говорит еще более определенно: «Как только наблюдатель выявил что-нибудь в физической системе, так энтропия системы снизилась, ибо для наблюдателя система стала менее неупорядоченной».
Можно ли признать эти мнения правильными? Представим себе, что наблюдатель исследует какоето тело, изучая движение различных частиц. Что будет, когда он полностью изучит его структуру? Если верить Пирсу и Бриллюэну, энтропия тела станет равной нулю. Как же так? Разве оттого, что мы наблюдаем молекулы в кубике газа, они должны прекратить свой «футбол»? Конечно, нет! Не потому велика энтропия газа, что мы не имеем сведений о движении каждой частицы, а потому, что в движении нет никакого порядка: газ не хранит информации, он стремится к равновесию, к наибольшему хаосу, к самой большой энтропии. Зато в кристалле порядок есть. Если газ охлажден настолько, что на стенке сосуда выпали кристаллы, значит энтропия уменьшилась. И не имеет никакого значения, знает ли наблюдатель о том, что появился новый кристалл.
А теперь давайте еще раз позовем наблюдателя, чтобы раз и навсегда уяснить себе его роль. Пусть наблюдает за этим кристаллом. Чем меньше он знает о том, как движутся в нем молекулы, тем больше получит он информации, наблюдая любую из них. Все в соответствии с формулой: I = 0 + n.
Объективная неопределенность от него не зависит - 0 равно постоянной величине. Но велика неопределенность его представлений n и потому велико значение I. Потому и считают жители Нового Города, что информация есть «мера неопределенности» - ведь они разрабатывают каналы связи, по которым будут идти только те сведения, которые являются новостью для наблюдателя.
Меняя маски
1. Унесенный ветром
Фантастика:
боевая фантастика
попаданцы
рейтинг книги
![Меняя маски](https://style.bubooker.vip/templ/izobr/no_img2.png)