Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики
Шрифт:
Давайте подробнее рассмотрим бизнес-модели двух типов магазинов замороженных йогуртов, поскольку сходство между ними удивительно. Когда инвесторы решают открыть новый магазин, они могут выбрать либо классическую, либо современную бизнес-модель. Разница в затратах незначительна. Современный магазин может обойтись дороже, поскольку он потребует дополнительное количество аппаратов и более широкий выбор топпингов. Все остальное – витрина, кассовый аппарат, система расчетных терминалов, отопление, электроэнергия и т. д. –
Простое изменение всего лишь двух малозначимых аспектов полностью преобразило йогуртовый бизнес – благодаря переходу от обслуживания продавцом к самообслуживанию и от оплаты за каждый компонент в отдельности к комплексной оплате. Эти незначительные новшества качественно изменили восприятие покупателей и поток доходности. Но как это связано с ИТ и аналитикой?
Подавляющее большинство ИТ-служб используют классическую бизнес-модель торговли йогуртами. В нашем случае йогуртом являются данные. По запросу пользователей ИТ-служба выделяет им данные в соответствии с установленными правилами, однако держит их на расстоянии от данных. Далее представим, что топпинг – это инструменты. Теоретически пользователи могут иметь столько инструментов для анализа данных, сколько пожелают. Но на практике приобретение нового инструмента, получившего одобрение ИТ-службы, – обычно настолько сложная и дорогостоящая процедура, что пользователи обходятся одним-двумя инструментами. В итоге они никогда не бывают полностью удовлетворены и всегда ощущают, что их потраченные деньги окупаются не полностью, – так же как и я при посещении классического магазина замороженных йогуртов.
Изменив способы применения базовой инфраструктуры и технологий в окружении данных, можно обеспечить пользователям прямой доступ к данным. Он должен быть таким же свободным, как доступ к аппаратам с йогуртом. Позвольте пользователям по их усмотрению смешивать и сопоставлять данные и производить анализ. Позвольте им применять любые инструменты. Прежде чем находка будет внедрена в производство, ИТ-служба может отладить процесс так, как это описано в шестой главе, и может потребовать использовать только утвержденные инструменты. Тем не менее предоставление пользователям возможности экспериментировать с различными инструментами в ходе обнаружения данных не принесет никакого вреда и способно значительно ускорить развитие новой аналитики.
Помните о том, что три современных магазина йогуртов успешно работают в моем районе, где раньше едва выживал один классический магазин. Если бы раньше у меня спросили, хочу ли я платить за йогурт больше, то я бы ответил отказом. Но теперь, распробовав альтернативу, я с удовольствием плачу больше, потому что получаю больше ценности. Аналогичным образом, когда бизнесмены получат доступ к более открытому аналитическому окружению, они будут рады выделять больше средств на ИТ-поддержку, как только обнаружат, что получают дополнительную ценность и наслаждаются возросшей свободой действий. Небольшие изменения в методах действий и культуре могут открыть двери для гораздо более здоровых и продуктивных отношений между ИТ-службами и бизнесом.
ИТ: от обслуживания к содействию
В моей статье для блога Harvard Business Review я подчеркивал необходимость преобразования ИТ-службы наподобие современных магазинов йогуртов {89} . Она должна перевести пользователей на самообслуживание данными, а не выполнять роль посредника. Самое главное, нужно изменить способ, посредством которого пользователи получают доступ к данным и инструментам обработки данных и платят за доступ.
89
См. мою статью «Не просто обслуживайте – содействуйте: новая модель для ИТ-организаций» (Bill Franks, “Don’t Just Serve – Enable: A New Model for IT Organizations”), Harvard Business Review, 28 августа 2013 г., на http://blogs.hbr.org/2013/08/dont-just-serveenable-a-new-mo/
Переход к современной бизнес-модели вовсе не означает, что организации придется полностью отказаться от имеющихся инфраструктуры и технологий. Надо лишь по-иному использовать существующие ресурсы и дать пользователям больше свободы. Чтобы стать современным, классическому магазину йогуртов достаточно переставить оборудование. Аналогичным образом концепции аналитической «песочницы» и платформы для обнаружения данных позволяют ИТ-службе перенастроить конфигурацию окружения корпоративных данных.
Когда пользователи получают больше свободы, они могут чаще обнаруживать данные – и чаще ошибаться. Здесь всегда присутствует компромисс. Родители так же постепенно предоставляют детям все больше свободы и не мешают им принимать собственные, пусть иногда и неправильные решения. Если не позволить детям делать ошибки, то, повзрослев, они окажутся неподготовленными к жизни в реальном мире.
Однажды мне задали вопрос о примере с магазинами йогуртов: что если некий покупатель смешает йогурты с разными вкусами и на выходе получит ужасную гадость? Другими словами, что если некий пользователь скомбинирует данные таким образом, что они окажутся непригодными ни для какого анализа? Я отвечаю, что в этих случаях виноваты не магазин йогуртов и не ИТ-служба, а сами люди, которые сделали плохую смесь. Хорошо, что при этом люди распознают непригодность приготовленной смеси и не совершат эту ошибку снова. Важнее же всего следующее соображение: лишая людей возможности создавать плохие сочетания вкусов или данных, вы также лишаете их возможности находить изумительные сочетания, которые понравятся всем. Вновь созданные ароматические смеси постоянно переходят в разряд стандартных.
Суть в том, что принимать очень плохие решения можно и без использования данных или аналитики. Организацию не должно парализовать вследствие опасений, что ее сотрудники могут поступить неправильно, если дать им больше свободы в доступе к данным и их анализе (разумеется, в рамках своих навыков и опыта). Пользователи способны совершать ошибки независимо от уровня доступа к данным. Многие ИТ-службы с трудом воспринимают необходимость таких перемен. Тем не менее небольшие изменения в подходе организации к использованию данных и аналитики могут принести крупные дивиденды.
Позвольте пользователям свободно исследовать данные и экспериментировать с новой аналитикой. Не все, но многие действия будут успешными. Произведите изменения в корпоративной культуре, отказавшись от контроля над данными в пользу свободы действий, и вы увидите, как положительно отреагируют на это пользователи.
Обеспечьте грамотное планирование
В седьмой главе мы говорили о необходимости избегать ускоренных методов при определении задач и планировании анализа. Несмотря на то что это не самые сложные виды деятельности, они требуют времени и сил, и потому можно легко поддаться искушению сократить или полностью пропустить эти два этапа. К счастью, они включены во все стандартные схемы аналитических процессов. Для того чтобы преуспеть с операционной аналитикой, организациям требуется утвердить культуру, в которой надлежащее определение проблем и планирование не только поощряются, но и предусматриваются. Если потратить вначале чуть больше времени, чтобы все правильно распланировать, то можно будет сэкономить массу времени впоследствии.