Самая сложная задача в мире. Ферма. Великая теорема Ферма
Шрифт:
Итак, любопытство Эйлера было разбужено комментариями Гольдбаха, и швейцарец начал анализировать работы Ферма. Среди прочего он доказал: тот ошибся, утверждая, что числа, известные как "числа Ферма", всегда простые. Также Эйлер изучал Великую теорему Ферма. И хотя он не смог доказать ее для общего случая, ему удалось доказать ее для n = 3. Так что на тот момент, когда Эйлер оставил данную тему, было доказано два случая... или на самом деле бесконечное их число, поскольку если доказать теорему для n = 3, результат также справедлив для всех чисел, кратных 3, то есть для последовательности 6, 9, 12, 15... Так происходит потому, что любая степень, кратная трем, может быть записана в виде числа в кубе. Например, 46 = 163.
Если бы мы могли доказать теорему для простых чисел, поскольку любое число кратно простым числам, мы бы доказали ее в целом. Однако, к сожалению, доказательство для п - 5 оказалось гораздо сложнее, чем представлял себе Ферма. В любом случае, тот факт, что Эйлер заинтересовался работами Ферма, вызвал интерес к теории чисел. Благодаря Эйлеру и Карлу Фридриху Гауссу (1777-1855) данная дисциплина превратилась в уважаемую математическую теорию, как этого и хотел Ферма.
Гаусс отзывался о Великой теореме Ферма достаточно презрительно и считал работу над ней потерей времени. Возможно, он и сам пытался решить когда-то эту задачу, но, потерпев неудачу и разочаровавшись, повел себя подобно лисе из басни про лису и виноград. Но другие математики его времени подошли к задаче очень серьезно. Например, Софи Жермен открыла, что для простых чисел, теперь носящих ее имя (числа р, где р — простое число, и Р = 2р + 1 также простое), с учетом некоторых требований, которым должны соответствовать Р и р (в частности, что р не является делителем произведения трех неизвестных — х, y, z — из уравнения Ферма), теорема Ферма верна для n = p. С помощью этого подхода Жермен удалось доказать теорему Ферма для всех простых чисел, меньших 100. К сожалению, ее работа не была опубликована при жизни.
Адриену Мари Лежандру и Густаву Лежёну Дирихле удалось доказать теорему для n = 5. При этом они использовали математические инструменты, которых не существовало в XVII веке, такие как теория квадратичных форм. Доказательство теоремы является относительно простым для n = 3 и n = 4, но оно становится гораздо сложнее начиная с n = 5 и недоступно обычным методам начиная с n = 23.
В любом случае, Софи Жермен была первой, кто попытался найти решение для целого класса чисел, а не для частных случаев; также она открыла новые подходы к решению задачи, которыми продолжали пользоваться в последующие годы.
В следующие десятилетия были предприняты попытки Габриеля Ламе (1795-1870) и Огюстена Луи Коши (1789-1857) доказать теорему. Ламе удалось найти решение для n = 7, и на бурном заседании Французской академии наук он объявил, что вот-вот докажет ее для общего случая. Он в общих чертах обрисовал свою стратегию, которая основывалась на алгебре комплексных чисел. Но настоящая сенсация произошла, когда Коши, который был одним из самых значительных математиков своего времени, встал и объявил, что он тоже вот-вот получит доказательство и его подход очень похож на метод Ламе.
Так началась гонка между этими двумя учеными, которая была драматично прервана немцем Эрнстом Куммером (181 893), публично заявившим, что подход Коши и Ламе неверен. Куммер справедливо утверждал, что они оба совершили роковую ошибку, когда предположили, будто комплексные числа, которыми они пользовались, имеют единственное разложение на множители.
После этого попытки Коши и Ламе провалились, в то время как Куммер продолжил исследования и в итоге создал новую математическую теорию, чтобы попытаться доказать Великую теорему Ферма. Данное исследование подтолкнуло его к изучению разложения на множители, на которое опирались французы, и это, в свою очередь, привело его к формулировке принципов того, что сегодня известно как теория идеалов. Инструменты для доказательства становились все более сложными...
Однако Куммер пошел еще дальше. Пользуясь еще более продвинутыми математическими методами, он нашел условия, которые делали возможным единственное разложение на множители. На основе этого он доказал, что существуют некие простые числа, называемые регулярными, для которых Последняя теорема Ферма выполняется. Куммеру удалось доказать теорему для огромного числа случаев (возможно, бесконечного, хотя не было доказано, что число регулярных простых чисел бесконечно). На самом деле ему удалось доказать ее для всех случаев меньше 100, кроме 37,59 и 67, являющихся иррегулярными простыми числами.
Подход Габриеля Ламе и Огюстена Луи Коши заключался в том, чтобы попытаться разложить на множители левый член уравнения Ферма в следующем виде: xn + yn = (x+y)(x+y)...(x+n-1y), где х и у — обычные целые числа, а — числа, которые известны как алгебраические целые числа. Последние, несмотря на свое название,— комплексные числа (числа вида а + bi, где i равен -1), появляющиеся в виде корней некоторого типа многочленов. Важно то, что если это разложение на множители является единственным, можно доказать, что нет решений для уравнения Ферма, то есть Последняя теорема истинна. Ламе и Коши открыли новый фронт: использование комплексных чисел в степени. Но Куммер доказал, что такое разложение на множители в целом невозможно. На основе этого он пытался найти условия, при которых можно было бы его осуществить, что привело его к изучению так называемых циклотомических полей. Они являются продолжением рациональных, полученных прибавлением одного из чисел k из предыдущего уравнения. Куммер впервые применил теорию групп к теории чисел. На основе этого немецкому математику удалось доказать, что существуют некие простые числа, которые не являются делителем числа, называемого числом класса идеалов, что служит характеристикой вышеупомянутого продолжения. Такие простые числа называются регулярными простыми числами.
Работа Куммера также была основополагающей для последующего обобщения его понятия идеальных чисел немецким математиком Рихардом Дедекиндом (1831-1916) при создании теории идеалов. Идеал, например, — это множество четных чисел, или кратных трем, однако существуют идеалы, не являющиеся числами, несмотря на то что к ним применимы близкие им понятия, такие как разложение на простые множители.
После смерти Куммера в 1893 году серьезные исследователи перестали заниматься поисками доказательства теоремы Ферма. В течение десятилетий эти поиски были уделом математиков-любителей, которые искали Грааль, обещающий славу и некое материальное вознаграждение (в начале XX века Пауль Вольфскель установил премию в 100 тыс. марок тому, кто докажет или опровергнет Великую теорему Ферма). Но методы, используемые этими любителями, были настолько же примитивны, как и методы самого Ферма, что снова и снова обрекало их на поражение. Изобретение компьютеров позволило начать поиски контрпримеров. Как известно, достаточно только одного контрпримера (в случае Ферма — найти по крайней мере одну тройку х,у и z натуральных чисел, для которых выполнялось бы равенство при n > 2), чтобы доказать, что теорема ложная. Наоборот, если нужно доказать ее истинность, не хватит и миллиона примеров.
Компьютеры, каждый раз все более мощные, позволили доказать в начале 1980-х годов, что Великая теорема истинна для всех значений п до четырех миллионов. Но этого было недостаточно. Хотя большинство математиков было убеждено в том, что теорема истинна, нельзя утверждать какой-то результат, сколько бы положительных случаев его ни подкрепляло. Ярким примером этого может служить гипотеза, которую сформулировал Эйлер в XVIII веке. В ней утверждалось, что равенство х4 + у4 + z4 = w4 не имеет натуральных решений. Только в 1988 году, примерно через 200 лет после смерти Эйлера, с помощью найденного контрпримера было доказано, что его гипотеза ложна. У уравнения существует следующее решение: x = 2682 440, у = 15365 639, z = 18 796 760, a w = 20 615 673.
Есть некая справедливость в том, что человек, который опроверг Ферма с его простыми числами, сам был, в свою очередь, опровергнут.
Но в 1983 году немецкий исследователь по имени Герд Фальтингс совершил гигантский прорыв, доказав, что если и существуют натуральные решения уравнения Ферма, то их число конечно. Это не доказывало теоремы, в которой говорится, что число решений равно нулю, но это был значительный прогресс. Будем осторожны и проясним, что конечное число решении может быть равно 101010 000 000 000 000 000 000 000 000 000 000 000 , так называемому "числу Скьюза", связанному с распределением простых чисел. Речь идет о невообразимо большом числе, намного большем, чем количество частиц во Вселенной, или даже большем, чем число возможных взаимодействий между этими частицами. Годфри Харди назвал его "самым большим числом, которое когда-либо имело применение в математике".