Секреты наследственности человека
Шрифт:
Проводят аналогичные эксперименты и на больных людях. Суть метода заключается в получении мышечных клеток от здорового донора. Затем их подращивают вне организма (in vitro) и вводят в мышцы больного. Стоимость такой операции составляет около 150 тыс долларов США. Такие опыты были проведены в 6 независимых исследовательских лабораториях, а результаты доложены в Париже в 1999 г. К сожалению, согласно мнению ведущих авторитетов в области биологии мышц и миодистрофий в существующем на данный момент виде этот метод абсолютно неэффективен. Как известно, иммунная система человека отторгает чужеродные (аллогенные) клетки ткани. С этой проблемой исследователи сталкиваются, пытаясь помочь больным миодистрофией. Возможно, прогресс в этой области будет достигнут, когда в дело пойдут эмбриональные клетки. Дело в том, что они еще не обладают специфическими белковыми метками, по которым иммунная система
Другой возможный путь — пересадка собственных стволовых клеток, полученных из костного мозга или скелетных мышц больного. При этом часть инъецированных клеток мигрирует и в скелетные мышцы, где сливается с миофибриллами, восстанавливая синтез дистрофина! Генотерапия же в данном случае пока почти бессильна. Несмотря на то, что ученые умеют выделять ген дистрофина, им пока не удается «доставит его по назначению» — то есть ввести в мышечные клетки, где работает его дефектная копия. Однако ученые не опускают руки. В нашей стране исследования по генной терапии миодистрофии Дюшена ведутся в Институте акушерства и гинекологии им. Д. О. Отта (Санкт-Петербург) в тесном контакте с ведущими лабораториями поданной проблеме в Великобритании и Италии, а также в комплексе с другими научно-исследовательскими институтами России, в частности Институтом молекулярной биологии им. акад. В. А. Энгельгардта, Институтом цитологии в Санкт-Петербурге, научным Центром Медицинской Генетики и Институтом экспериментальной медицины в Санкт-Петербурге. Остается только надеяться, что в обозримом будущем эти исследования увенчаются практическим успехом!
Кровеносная система
Мы с тобой одной крови — ты и я!
Уникальная комбинация
Стремясь победить старость, римский папа Иннокентий VII в конце XV века приказал своим медикам перелить в его тело кровь от двух молодых юношей. В результате такой операции глава римской католической церкви скончался. Вместе с тем, врачам были известны случаи, когда переливание крови буквально возвращало жизнь подопытным животным. В 1666 г. лондонский врач Лоуэр после смерти обескровленной собаки влил в ее вены через пустотелое гусиное перо кровь от живой собаки и буквально воскресил умершую. Собака вернулась к жизни. Эти опыты продолжил французский врач Жан-Батист Дени. Он решился на рискованный эксперимент — перелил человеку более 150 г крови овцы. Пациент выжил. Дени продолжал свои опыты, пока один из его пациентов, Антони Монрой, в результате такого переливания не скончался. Вдова Монроя обвинила Дени в убийстве, и хотя суд оправдал врача, но наложил запрет на подобные рискованный эксперименты с кровью. Это вето затормозило изучение переливания крови на целых два столетия, пока уже в XIX веке перспективами переливания не увлекся английский врач Джеймс Бландел. Он мечтал с помощью таких приемов спасать жизнь роженицам, которые порой умирали от большой потери крови.
К концу XIX века в мире было произведено около 600 переливаний крови пациентам, однако более половины таких случаев привело к гибели людей, которым вводили кровь. Почему же одни такие операции были успешными, а другие заканчивались трагически? В конце XIX века немецкий хирург Теодор Бильрот, анализируя зафиксированные в истории медицины неудачные попытки переливания крови, — впервые высказал предположение, что существуют различные ее типы, несовместимые друг с другом. Эта идея казалась его коллегам странной, к ней относились с подозрением.
Однако зимой 1900 г. скромный 33-летний ассистент патолого-анатомического института Венского университета Карл Ландштейнер проделал простой опыт, который подтвердил предположение Бильрота. Взяв пробы крови у себя и у пяти своих коллег, он отделил сыворотку от кровяных клеток. Затем он смешал эти сыворотки с клетками крови в разных комбинациях. В одной из пробирок эритроциты быстро слиплись вместе и осели на дно кровавыми хлопьями. Так были открыты группы крови. К 1908 г. стало известно, что таких групп существует, как минимум, четыре.
Их стали обозначать латинскими буквами и цифрами. Универсальными донорами оказались люди с группой 0 (I). Их кровь можно было без особой опаски переливать всем остальным реципиентам. Кровь групп А (II) и В (III) можно было переливать людям с четвертой группой АВ (IV). В пределах каждой группы переливания также были безопасными. Открытие Ландштейнера оказалось настолько важным в теоретическом и в практическом планах, что в 1930 г. ему была присуждена Нобелевская премия.
Позже исследователи обнаружили, что четыре группы крови, открытых Ландштейнером и его коллегами, составляют лишь одну из систем. Выяснилось, что существует и другие системы совершенно независимых друг от друга групп крови. Сначала эти системы называли буквами латинского алфавита. Так появились 6 групп крови системы MNS, 7 групп системы Ph, 3 группы системы Р и так далее. Позже ученые стали давать свои фамилии новым, открытым ими системам крови. В наше время существуют группы крови «Даффи», «Кидд», «Хагеман», «Домброк», «Льюис» и некоторые другие. Каждая такая система включает минимум две группы. Эти группы менее известны, чем группы системы AB0, поскольку они почти не учитываются при переливаниях крови от доноров к реципиентам. Вместе с группами AB0 к настоящему времени существует около 12 наиболее распространенных трупп крови, которые образуют более 290 тысяч независимых комбинаций! Это означает следующее. Если учесть не только группы крови AB0, но и другие упомянутые выше, то ваша индивидуальная «формула» крови становится практически уникальной. Вероятность ее случайного совпадения с группой крови другого человека составляет около 1/1000.
Зачем это надо?
Что же это за группы такие? Чем именно они определяются? Почему некоторые комбинации несовместимы при переливании? Зачем, наконец, природе было создавать все это разнообразие? Давайте разбираться.
В мембране практически любой клетки находятся белки. Они сидят в ней как морковки на грядке. Часть молекулы белка «заякорена», словно корешок, в мембране, а часть торчит наружу, как ботва. Часто к таким торчащим наружу белкам присоединяются еще и молекулы сахаров (углеводов). Наиболее известные простые сахара (моносахариды) — это глюкоза и фруктоза. Помимо них есть еще много других моносахаридов. По-разному соединяя между собой относительно простые молекулы моносахаридов, можно получить множество более сложных полисахаридов. Иначе говоря, моносахариды — это своеобразные «детальки» молекулярного конструктора, с помощью которых можно строить сложные длинные молекулы. И не только сложные, но и во многом уникальные, поскольку различных сочетаний элементов — море.
Сложные сахара, соединенные с белками, называются гликопротеинами (греч. glykys — сладкий). Таким образом, многие клетки покрыты своеобразной уникальной «сахарной шубкой» из гликопротеинов. Есть она и на поверхности красных клеток крови — эритроцитов. Группы крови как раз и отличаются друг от друга тем, какие именно сахара и белки находятся на поверхности эритроцитов каждой конкретной группы. Более того, иммунная система человека в состоянии отличать одни «сахарные метки» от других и вырабатывать антитела на чужие молекулы.
Вернемся для примера опять к группе крови AB0. У человека с группой крови 0 на поверхности эритроцитов нет молекул А и В, зато есть антитела к ним: анти-А и анти-В. Кровь второй группы А содержит молекулы А и анти-В. Кровь третьей группы В содержит молекулы В и анти-А. Наконец, кровь группы АВ не содержит антител анти-А и анти-В и имеет на поверхности эритроцитов молекулы А и В. Если человеку с нулевой группой крови перелить кровь группы АВ, все эритроциты перелитой крови склеятся, поскольку антитела анти-А и анти-В будут активно связываться с молекулами А и В на их поверхности. Если же поступить наоборот — перелить кровь группы 0 человеку с группой АВ, то с перелитой кровью ничего страшного не произойдет. Собственная же кровь реципиента свернуться под воздействием антител донора не может — этих антител оказывается слишком мало для подобной акции.
В детали описанной выше схемы можно и не вдаваться. Главное — понять, почему вообще в крови некоторых людей существуют антитела против молекул, имеющихся на поверхности клеток крови других людей. Вряд ли природа «придумала» такую ситуацию, стараясь помешать изобретательным людям впоследствии переливать кровь друг другу в любых комбинациях. Кстати, группы крови есть не только у людей, но и почти у всех видов теплокровных животных.
Возможно, дело в следующем. «Сахарные метки» на поверхности клеток нередко служат для «заякоривания» с их помощью разнообразных вирусов и бактерий. Более того, на поверхности многих бактерий также содержатся различные сахара и белки. Поэтому клетки, поверхность которых лишена определенных молекул, как бы становятся «невидимыми» для атак со стороны некоторых микроорганизмов. Присутствие же в сыворотке крови антител против некоторых полисахаридов затрудняет размножение в ней этих патогенных бактерий.