Системная технология
Шрифт:
fij = { fi, ?ijfi }(3.3.15)
Очевидно, что система sij имеет общую часть sai с каждой системой sik.
Теорема 3.7.Система sij разложима на cистемы: основную целенаправленную saij и дополнительную seij:
sij= saij ? seij;
saij= < { ai0, bi0, ?еij, ?aij }, wj, wy, фi, фij >;(3.3.16)
seij = < {?ai, ?вi, dij0, eij0 }, wj, wy, фi, фij >.
Справедливость (3.3.16) очевидна из предыдущего изложения.
Теорема 3.8.Модели полной, основной и дополнительной систем S, Sa, Sе представляют собой теоретико-множественные объединения
S = < ? sij, W, ? > ;
Sa = <? sаij, W, ? >;
Se = <? sеij, W, ?>.(3.3.17)
* В результате теоретико-множественного объединения sij, sаij, sеij сформируются множества-носители систем S, Sa, Se и, кроме того, объединение множества операций и отношений W' и ?', определенных на элементарных системах:S = < { А, В, D, Е }, W', ?', W0, ?0 >,
Sa = < { A0, B0, ?d, ?e }, W', ?', W0, ?0 >,
Se = < {?a, ?в, D0, E0 }, W', ?', W0, ?0 >.
Множества операций W0 и предикатов ?0 формируются в процессе создания систем S, Sa, Se из элементарных систем: вводится отношение порядка ?, определяется набор предикатов и соответствующие отношения на множестве-носителе, отвечающие выбранным предикатам и т.д. В результате формируются множества W и ? систем S, Sа, Se: W=W' ? W0, ? = ?' ? ?0 и модели S, Sа, Se приводятся к виду (3.3.1).
Модели границ систем* С помощью полученных моделей можно описать модели границ системы с ее внешней средой и с внутренней средой ее элементов.
Прежде, чем описать модель границы системы с внешней средой, определим основные черты модели внешней среды системы. Как следует из результатов глав 1,2, с позиций системы внешняя среда представляет собой совокупность источников и потребителей восьми видов ресурсов: материального M, энергетического E, информационного I, человеческого P, природного N, коммуникационного C, финансового F, недвижимости, машин и оборудования A. Эти ресурсы используются системой для построения структуры, для осуществления процесса производства изделия по заказу внешней среды, для поддержания жизнеобеспечения и конкурентоспособности, для развития и для других целей.
* Источники и потребители ресурсов, как элементы модели внешней среды, связаны между собой сложными взаимодействиями, которые не поддаются математической формализации в общем виде, пригодном для конструктивного использования во всех случаях моделирования общих систем. Обозначим через a(К)1 и a(К)2, К ? {M,I,P,E,F,N,C,A} компоненты внешней среды – источники и потребители соответствующих видов ресурсов по отношению к системе и, соответственно, через b(K)1 и в(K)2, К ? {M,I,P,E,F,N,C,A} обозначим процессы, осуществляемые источниками и потребителями, как компонентами внешней среды. Часть из них может относиться к системе-субъекту, но так как для данного случая это не имеет значения, мы не будем здесь акцентировать внимание на этом обстоятельстве. * Обозначим через e(К)1 и e(К)2 элементы взаимодействияМодель границы системы с внешней средой представляет собой совокупность
G = < а(с), b(с), Е1, Е2, Е(вх), Е(вых), D1, D2, D(вх), D(вых), WG, ФG >,
где
E1={e(K)1}, E2={e(K)2}, E(вх)={е(вх)К}, Е(вых)={е(вых)К}, D1={d(K)1}, D2={d(K)2}, D(вх)={d(вх)К}, D(вых)={d(вых)К}, K ? {M,I,P,E,F,N,C,A}.
* Моделью границы системы с внутренней средой ее элементов является модель дополнительной системы Se (3.3.11) в соответствии с описанием границы системы с внутренней средой ее элементов, приведенным в разделе 3.1. Изоморфизм и декомпозиция моделей.* Изоморфизмом системы S на системы Sа, Se и др. будет взаимнооднозначное отображение множества-носителя системы S на множества-носители систем Sа, Se и др., сохраняющее главные операции и предикаты модели (3.3.1).
Изоморфизм рассмотрим на графовых моделях систем, процессов, структур. Два графа G1 = G1(V1, H1) и G2= G2(V2, H2) считаются изоморфными, если существует взаимооднозначное отображение такое, что V1 взаимнооднозначно отображается на V2 и H1 взаимнооднозначно отображается на H2, т.е. каждой вершине из V1 соответствует одна и только одна вершина из V2 и наоборот, а каждому ребру из H1 соответствует одно и только одно ребро из H2 и наоборот, каждому ребру из Н2 соответствует одно и только одно ребро из Н1.