Чтение онлайн

на главную

Жанры

Шрифт:

Так накапливались указания на то, что идеи Максвелла имеют универсальное значение, а затем целеустремлённые опыты Генриха Герца с весьма быстрыми электрическими колебаниями увенчались беспримерным успехом — получением электрических волн сантиметровой длины. Благодаря этому открытию, которое привлекло внимание физиков всех стран, идеи Максвелла стали претворяться в делах и началась новая эпоха в развитии экспериментальной и теоретической физики.

Значение опытов Герца для теории Максвелла окажется ещё более важным, если учесть, что Герц с самого начала исходил вовсе не из того, чтобы утвердить теорию Максвелла. Насколько Герц был свободен от влияния теории Максвелла, яснее всего подтверждается тем фактом, что он долгое время, в противоположность теории Максвелла, полагал, что установил в своих опытах разницу в скорости распространения

электрических волн в воздухе и по проводам. Лишь потом Герц выяснил, чти эта разница была обусловлена помехами из-за находившихся поблизости проводников.

Отныне победа максвелловской теории была обеспечена и ближайшей задачей стало её дальнейшее развитие в различных направлениях, в частности, в области получения и исследования волн, занимающих промежуточное положение (по своей длине) между электрическими и оптическими волнами. Среди немецких физиков, которые прославились в этой области, следует в первую очередь отметить Генриха Рубенса, который одновременно с Эрнстом Хагеном добился важного результата: он доказал, что экспериментальные данные относительно отражения света от металлов, истолкование которых представило серьёзные трудности для самого Максвелла, во всех деталях соответствуют теории Максвелла, если применять свет большей длины волны. Так то, что было предметом забот, стало одним из достижений теории Максвелла.

Правда, остаётся ещё неясным вопрос об отражении коротковолнового света от металла. Здесь мы действительно подходим к рубежу, который не могут преодолеть уравнения Максвелла, в их первоначальном виде допускающие, что материя непрерывно распределена в пространстве, и намечается необходимость введения атомистических представлений. По мере развития точных методов измерения стало ясно, что одной атомистикой вещества дело не обойдётся, что и энергия в известном смысле обладает атомистической структурой. Становится ясным и то, что различие между корпускулярными и волновыми процессами, до сих пор считавшееся чем-то само собой разумеющимся и которое мы положили в основу наших рассуждений, принципиально не осуществимо и его можно вводить лишь как предельный случай. Ибо как, с одной стороны, в однородной волне энергия фактически находится в дискретных частицах, так, с другой стороны, при столкновении двух молекул всегда наблюдаются интерференционные явления, как при наличии двух групп волн.

Максвелл не был свидетелем этого переворота, его задачей могло быть только построение и завершение классической теории, и, выполняя эту миссию, он достиг наивысшего из того, что можно себе представить. Имя его блистает на вратах классической физики и мы имеем право сказать о нём: по рождению он принадлежит Эдинбургу, как личность он принадлежит Кембриджу, а труды его — достояние всего мира.

Влияние Максвелла на развитие представлений о физической реальности

А. Эйнштейн

Вера в существование внешнего мира, независимого от воспринимающего субъекта, лежит в основе всего естествознания. Но так как чувственное восприятие даёт лишь косвенные сведения об этом внешнем мире, или «физической реальности», последняя может быть познана нами только спекулятивным путём. Отсюда вытекает, что наши представления о физической реальности никогда не могут быть окончательными. Мы всегда должны быть готовы менять эти представления, т. е. аксиоматическую основу физики, для того чтобы логически наиболее совершённым путём объяснить результаты наблюдений. Обзор развития физики показывает, что эта аксиоматическая основа действительно претерпевала со временем глубокие изменения.

После основания теоретической физики Ньютоном наиболее значительное изменение её аксиоматической основы было вызвано исследованием электромагнитных явлений Фарадеем и Максвеллом. Попытаемся уточнить этот вопрос рассматривая его развитие как до этих исследований, так и после них.

Согласно системе Ньютона, физическая реальность характеризуется понятиями пространства, времени, материальной точки, силы (или эквивалентным ей взаимодействием материальных точек), а физические явления нужно рассматривать как подчиняющиеся определённым законам движения материальной точки

в пространстве. Материальная точка является единственным представителем реальности, поскольку она изменчива. К понятию материальной точки, безусловно, привели наблюдаемые тела; материальную точку можно себе представить подобной лишённому признаков протяжённости, формы, пространственной ориентации, всех «внутренних» свойств, сохранившему лишь инерцию и трансляцию, движущемуся телу, к которому добавляется лишь понятие силы. Материальные тела, которые психологически вызвали образование понятия «материальная точка», со своей стороны сами должны были теперь рассматриваться как система материальных точек. Необходимо отметить, что по своей сущности эта теоретическая система является атомистической и механистической. Все события рассматривались чисто механически, т. е. как происходящие по закону Ньютона простые движения материальных точек.

Самым уязвимым местом теоретической системы, отвлекаясь от обсуждающихся вновь в последнее время трудностях понятия «абсолютного пространства», было главным образом учение о свете. В соответствии со своей теорией Ньютон считал, что свет тоже состоит из материальных точек. Уже тогда со всей остротой возникала проблема: что происходит с материальными точками, образующими свет, при его поглощении? Кроме того, не удовлетворял тот факт, что для описания света и весомой материи необходимо было ввести в рассмотрение материальные точки совершенно различного рода. К ним позже добавились частицы третьего рода — электрические, с совершенно другими основными свойствами. Наконец, слабость всей системы заключается в абсолютно произвольном гипотетическом выборе сил, определяющих происходящие явления. И все-таки эта концепция реальности дала многое. Как случилось, что почувствовалась необходимость её остановить?

Чтобы придать своей системе математическую форму, Ньютон был вынужден ввести понятие производной и представить законы движения в виде обыкновенных дифференциальных уравнений. Это был, возможно, крупнейший мыслимый шаг, который суждено было сделать кому-либо из людей. Дифференциальные уравнения в частных производных здесь не нужны, и Ньютон ими систематически и не пользовался. Но эти уравнения были необходимы для механики деформируемых тел; это было связано с тем, что в начале в таких задачах не играло роли, каким образом тела построены из материальных точек.

Дифференциальное уравнение в частных производных вошло в теоретическую физику в качестве служанки, но постепенно оно стало госпожой. Это началось в XIX в., когда утвердилась волновая теория света. Свет в пустом пространстве рассматривался как колебательный процесс в эфире, и должно было казаться бесполезным считать и эфир конгломератом материальных точек. Здесь впервые дифференциальные уравнения в частных производных выступили в физике как естественное выражение элементарного процесса. Континуальное поле вошло в одну из областей теоретической физики как представитель физической реальности наряду с материальной точкой. Этот дуализм не исчез до сих пор хотя такое положение должно казаться неестественным.

Хотя после этого представление о физической реальности перестало быть чисто атомистическим оно оставалось механистическим. Вновь и вновь пытались все происходящие события интерпретировать как движения инертной массы, ибо другой трактовки просто нельзя было себе представить. И тут наступил великий перелом, который во все времена будут связывать с именами Фарадея, Максвелла и Герца. Львиная доля в этой революции принадлежит Максвеллу. Он показал, что все известное тогда о свете и электромагнитных явлениях может быть изложено с помощью его, ныне широко известной, двойной системы дифференциальных уравнений в частных производных, куда электрическое и магнитное поля входили как зависимые переменные. Правда, Максвелл пытался обосновать или оправдать эти уравнения с помощью мысленных механических построений. Он использовал одновременно несколько таких построений, и ни одно из них не считал истинным, так что существенными оказались лишь уравнения и фигурирующие в них элементарные, не сводимые к другим сущностям, силы поля. К концу XIX в. концепция об электромагнитном поле как несводимой сущности, стала уже всеобщей, и серьёзные физики перестали верить в правомочность или возможность механического обоснования уравнений Максвелла. Наоборот вскоре стали даже пытаться использовать материальные точки и их инерцию с позиций теории поля при помощи уравнений Максвелла. Но эти попытки конечно не увенчались успехом.

Поделиться:
Популярные книги

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

Приручитель женщин-монстров. Том 1

Дорничев Дмитрий
1. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 1

Виконт. Книга 1. Второе рождение

Юллем Евгений
1. Псевдоним `Испанец`
Фантастика:
фэнтези
боевая фантастика
попаданцы
6.67
рейтинг книги
Виконт. Книга 1. Второе рождение

Идеальный мир для Лекаря 25

Сапфир Олег
25. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 25

Магия чистых душ 3

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Магия чистых душ 3

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Метатель. Книга 2

Тарасов Ник
2. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель. Книга 2

Отмороженный 5.0

Гарцевич Евгений Александрович
5. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 5.0

Кодекс Охотника. Книга XIII

Винокуров Юрий
13. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XIII

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Огненный князь 6

Машуков Тимур
6. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 6

Ваше Сиятельство 5

Моури Эрли
5. Ваше Сиятельство
Фантастика:
городское фэнтези
аниме
5.00
рейтинг книги
Ваше Сиятельство 5

"Фантастика 2024-5". Компиляция. Книги 1-25

Лоскутов Александр Александрович
Фантастика 2024. Компиляция
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Фантастика 2024-5. Компиляция. Книги 1-25

Поступь Империи

Ланцов Михаил Алексеевич
7. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Поступь Империи