Чтение онлайн

на главную

Жанры

Шрифт:

Если отвлечься от отдельных значительных результатов, полученных Максвеллом на протяжении всей его жизни в важных областях физики, и направить все внимание на те изменения, которые из-за них претерпело воззрение на природу физической реальности, то можно сказать, что до Максвелла физическая реальность, поскольку она выражает явления в природе, мыслилась как материальные точки, изменения которых состоят только в движениях, регулируемых дифференциальными уравнениями в частных производных. После Максвелла физическая реальность мыслится выраженной необъяснимыми, с механической точки зрения, континуальными полями, подчиняющимися дифференциальным уравнениям в частных производных. Это изменение представления о реальности является наиболее глубоким и плодотворным из всех, которые знала физика после Ньютона. Но нужно признать, что полная реализация идей этой программы ещё никоим образом не удалась. Установленные с тех

пор и добившиеся успеха физические теории являются скорее компромиссом между обеими программами. Именно из-за своего компромиссного характера эти системы носили на себе печать недолговечности и логического несовершенства, несмотря на то, что в отдельности каждая из них добивалась значительных успехов.

В первую очередь следует назвать созданную Лоренцом электронную теорию, в которой поле и электрические частицы одновременно выступают в качестве равноправных элементов концепции реальности. За ней последовали специальная и общая теория относительности, которые (хотя они полностью основаны на представлениях теории поля) не смогли избежать введения материальных точек и обыкновенных дифференциальных уравнений.

Последним, добившимся больших успехов, творением теоретической физики является квантовая механика. В своей основе она принципиально отклоняется от обеих программ, которые мы кратко назовём программами Ньютона и Максвелла. Ибо фигурирующие в её законах величины не претендуют на выражение самой физической реальности; они дают только вероятности наступления какой-либо рассматриваемой физической реальности. Дирак, которому, по моему мнению, мы обязаны наиболее логически удовлетворительным изложением этой теории, справедливо указывает, что, например, должно быть нелегко так теоретически описывать фотон, чтобы это описание содержало достаточное основание для суждения о том, пройдёт ли фотон через поставленный на его пути под углом поляризатор или нет.

Я все-таки склонён думать, что физики недолго будут ограничиваться таким косвенным описанием реальности, даже если удастся удовлетворительным образом согласовать эту теорию с постулатом общей относительности. Тогда, вероятно, снова нужно будет вернуться к попытке реализации программы, которую мы можем, собственно, назвать программой Максвелла: описание реальности полями, удовлетворяющими дифференциальным уравнениям, не содержащим сингулярностей.

Максвелл и современная теоретическая физика

Н. Бор

Я чувствую себя польщённым тем, что мне предоставлена возможность отдать дань уважения памяти Джемса Клерка Максвелла, создателя электромагнитной теории, которая имеет такое существенно важное значение для работы каждого физика. В связи с этим юбилеем мы слышали выступления главы Тринити-колледжа и сэра Джозефа Лармора, которые очень авторитетно и обаятельно говорили об удивительных открытиях Максвелла и о его личности, а также о неразрывной традиции, сохраняемой здесь, в Кембридже, и связывающей жизнь и труды Максвелла с нашим временем. Хотя в мои ранние учебные годы я имел огромное преимущество пользоваться чарами Кембриджа и вдохновляться влиянием английских физиков, боюсь, что мне не удастся добавить что-нибудь достаточно интересное в этом отношении. Но мне, конечно, доставляет огромное удовольствие приглашение сказать несколько слов о связи между трудами Максвелла и последующим развитием атомной физики.

Я не буду говорить о фундаментальном вкладе Максвелла в развитие статистической механики и кинетической теории газов, о чем уже говорил профессор Планк, особенно в части плодотворного сотрудничества Максвелла с Больцманом. Я намерен только сделать несколько замечаний о применении электромагнитной теории к проблеме строения атома, где теория Максвелла не только была исключительно плодотворна в истолковании явлений, но дала максимум того, что может дать какая бы то ни было теория, а именно способствовала различным предположениям и управляла развитием за пределами её первоначальных рамок.

Я должен, конечно, быть весьма кратким в обсуждении применений идей Максвелла к атомной теории, что само по себе составляет целую главу физики. Я только напомню, с каким успехом идея об атомной природе электричества была включена в теорию Максвелла Лармором и Лоренцем и в особенности, как с её помощью были объяснены явления дисперсии, в том числе замечательные особенности эффекта Зеемана. Я хотел бы также упомянуть о существенном вкладе в электронную теорию магнетизма, сделанном профессором Ланжевеном, которого, к великому сожалению, нет среди нас сегодня. Но больше

всего я думаю в этой связи о влиянии, оказанном идеями Максвелла на сэра Джозефа Томсона в его основоположном труде по электронному строению материи — начиная с основной идеи об электромагнитной массе электрона и кончая его знаменитым методом подсчёта электронов в атоме посредством рассеяния рентгеновских лучей, сохранившим своё значение до настоящего времени.

Развитие атомной теории, как известно, скоро вывело нас за пределы прямого и последовательного применения теории Максвелла. Однако я должен подчеркнуть, что именно возможность анализа явлений излучения благодаря электромагнитной теории света привела к признанию существенно новых особенностей в законах природы. Фундаментальное открытие кванта действия Планком заставило радикально пересмотреть все наши представления в естественных науках. И все же при таком положении теория Максвелла продолжала оставаться ведущей теорией. Так, соотношение между энергией и импульсом излучения, которое следует из электромагнитной теории, нашло применение даже в объяснении комптон-эффекта, для которого идея фотона Эйнштейна оказалась таким подходящим средством учёта заметного отклонения от классических представлений. Теория Максвелла не перестала использоваться в качестве направляющего начала и на позднейшей стадии развития атомной теории. Хотя фундаментальное открытие лордом Резерфордом атомного ядра, приведшее к замечательному завершению наших представлений об атоме, ярче всего обнаружило ограниченность обычной механики и электродинамики, единственным путём развития в этой области осталось сохранение возможно более тесного контакта с классическими идеями Ньютона и Максвелла.

На первый взгляд может показаться, что здесь необходимо было какое-то существенное видоизменение теории Максвелла, и было даже предложено добавить новые члены к знаменитому уравнению Максвелла для электромагнитного поля в свободном пространстве. Но теория Максвелла оказалась слишком последовательной и слишком изящной, чтобы допускать такого рода модификацию. Может только возникнуть вопрос об обобщении теории в целом или, скорее, о переводе её на новый физический язык, приспособленный для того, чтобы учесть существенную неделимость элементарных процессов таким образом, чтобы каждая особенность теории Максвелла нашла соответствующую особенность в новом формализме. За последние несколько лет эта цель действительно была в значительной степени достигнута замечательным развитием новой квантовой механики, или квантовой электродинамики, связанной с именами де Бройля, Гейзенберга, Шрёдингера и Дирака.

Когда приходится слышать как физики в наши дни толкуют об электронных волнах и о фотонах, может показаться, пожалуй, что мы полностью оставили почву, на которой строили Ньютон и Максвелл. Но мы вое, я думаю, согласимся, что такие понятия, как бы плодотворны они ни были, не могут никогда представлять что-либо большее, чем удобное средство выражения следствий квантовой теории, которые не могут быть представлены обычным способом. Не следует забывать, что только классические идеи материальных частиц и электромагнитных волн имеют недвусмысленное поле применения, между тем как понятия фотона и электронных волн его не имеют. Их применение существенно ограничивается случаями, в которых, учитывая существование кванта действия, невозможно рассматривать наблюдаемые явления, как независимые от приборов применяемых для их наблюдения. Мне хочется в качестве примера назвать наиболее яркое применение идей Максвелла, а именно электромагнитные волны в беспроволочной передаче. Было бы чистым формализмом говорить о том, что эти волны состоят из фотонов, так как условия, при которых мы управляем передачей и приёмом радиоволн, исключают возможность определения числа фотонов, которое они должны содержать. В таком случае мы можем сказать, что всякие следы идеи фотона, которая по существу связана с перечислением элементарных процессов, совершенно исчезли.

Вообразим на минуту, в качестве иллюстрации, что новейшие экспериментальные открытия эффектов электронной дифракции и фотонов, которые так хорошо укладываются в символизм квантовой механики, были сделаны до работ Фарадея и Максвелла. Конечно, такое положение немыслимо, поскольку истолкование рассматриваемых экспериментов существенно основано на понятиях, созданных трудами этих учёных. Тем не менее позвольте принять такую воображаемую точку зрения и спросить: каково было бы в этом случае состояние науки? Я думаю, не будет преувеличением сказать, что мы были бы дальше от непротиворечивого взгляда на свойства материи и света, чем Ньютон и Гюйгенс. В самом деле, мы должны осознать, что недвусмысленное истолкование любого измерения должно быть по существу выражено в терминах классических теорий, и мы можем сказать, что в этом смысле язык Ньютона и Максвелла останется языком физиков на все времена.

Поделиться:
Популярные книги

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Гром над Академией Часть 3

Машуков Тимур
4. Гром над миром
Фантастика:
фэнтези
5.25
рейтинг книги
Гром над Академией Часть 3

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Законы рода

Flow Ascold
1. Граф Берестьев
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Законы рода

«Три звезды» миллиардера. Отель для новобрачных

Тоцка Тала
2. Три звезды
Любовные романы:
современные любовные романы
7.50
рейтинг книги
«Три звезды» миллиардера. Отель для новобрачных

Мимик нового Мира 13

Северный Лис
12. Мимик!
Фантастика:
боевая фантастика
юмористическая фантастика
рпг
5.00
рейтинг книги
Мимик нового Мира 13

Месть за измену

Кофф Натализа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть за измену

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Не грози Дубровскому! Том 11

Панарин Антон
11. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том 11

Наваждение генерала драконов

Лунёва Мария
3. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Наваждение генерала драконов

Огненный князь 4

Машуков Тимур
4. Багряный восход
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 4

Мужчина не моей мечты

Ардова Алиса
1. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.30
рейтинг книги
Мужчина не моей мечты

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс