Стеклянная клетка. Автоматизация и мы
Шрифт:
Создание самостоятельно передвигающегося автомобиля – отнюдь не новость. Инженеры начали конструировать автомобили-роботы и машины с дистанционным управлением, начиная с восьмидесятых годов. Но их эксплуатация ограничивалась экспериментальными поездками по закрытым трекам или гонками в пустынях и других отдаленных местах, где на тысячи миль нет ни одного пешехода или полицейского. По мнению Труна, гуглмобиль – это нечто принципиально другое. Он уникален и как транспортное средство, и как автомат, способный ездить по реальным дорогам со всеми их пробками, хаосом и «подрезаниями». Снабженный лазерными дальномерами, радаром, звуковыми датчиками, детекторами движения, видеокамерами и приемниками сети GPS автомобиль может улавливать мельчайшие детали дороги и соответственно на них реагировать. Он способен «видеть», куда едет. Мгновенно обрабатывая весь поток поступающей информации, бортовые компьютеры жмут педаль газа, крутят руль и управляют тормозом, соблюдая необходимую скорость для данной дороги, быстро реагируют на неожиданные ситуации, с которыми сталкивается в жизни каждый водитель. Самоуправляющиеся гуглмобили уже прошли по дорогам более полумиллиона миль, и машина без водителя пока попала только в одно серьезное ДТП, когда в 2011 году столкнулись несколько автомобилей у штаб-квартиры компании «Кремниевая долина». Правда, инженеры Google тут же объявили, что в этот момент их машиной управлял
Самоуправляющемуся автомобилю предстоит пройти еще долгий путь, прежде чем он начнет возить нас на работу, а наших детей на тренировки. Google объявил, что первые подобные автомобили, начнут производиться серийно к 2020 году, но, вероятно, инженеры выдают желаемое за действительное. Сенсорная система машины чрезвычайно дорога. Один только лазерный аппарат на крыше стоит больше 80 тысяч долларов. Остается множество нерешенных технических проблем: езда во время дождя или по дороге, усыпанной опавшими листьями; неожиданные объезды; необходимость реагировать на сигналы полицейских и дорожных рабочих. Компьютер пока еще не умеет различать безобидные предметы на дороге (раздавленный картонный ящик), опасные вещи (утыканный гвоздями кусок фанеры) и т. п.). Однако самыми неприятными являются психологические и правовые проблемы, возникающие с появлением на дорогах автомобилей без водителей. Кто, например, будет по закону отвечать за ДТП с участием такого автомобиля, повлекшее за собой смерть или увечье человека? Владелец транспортного средства? Производитель, установивший систему самоуправления? Программисты, писавшие программы для бортового компьютера? Едва ли самоходные автомобили появятся на наших дорогах до урегулирования этих сложных вопросов.
Тем не менее никто еще не смог остановить движение прогресса. Многие разработки инженеров Google, несомненно, найдут применение в новых легковых и грузовых автомобилях следующих поколений. Компания заявила о своих притязаниях открыто, но другие автомобилестроители занимаются такими же разработками, никак их не афишируя. В настоящее время целью этих работ является не столько создание робота на колесах, сколько изобретение все новых средств автоматизации управления автомобилем, помогающих повысить безопасность, удобство и привлекательность машин для потенциальных покупателей. С тех пор как я впервые в жизни повернул ключ зажигания двигателя старенькой Subaru, автоматизация управления автомобилем шагнула далеко вперед. Сегодняшние автомобили буквально нашпигованы электронными приспособлениями. Микрочипы и сенсоры контролируют работу автомата постоянной скорости, противозаклинивающего тормозного устройства, механизмов тяги и сохранения устойчивости, а в машинах последних моделей электроника регулирует передачу при переменной скорости, помогает парковаться, избегать столкновений, регулирует мощность света фар и работу дисплеев приборной панели. Изощренное программное обеспечение уже стало буфером между нами и дорогой. Машиной управляем, собственно говоря, не мы, а потоки электронных импульсов, порождаемых бортовым компьютером.
В ближайшие годы управление будет все в большей степени передаваться приборам. Производители автомобилей класса «люкс» – Infiniti, Mercedes-Benz, Volvo – уже создают машины, в которых система лазерного автомата постоянной скорости работает даже в условиях прерывистого движения в пробках, где разгон часто чередуется с торможением. Компьютеризированная система рулевого управления помогает машине держаться в середине ряда, а также при необходимости экстренно тормозить. Другие компании стремятся создать еще более совершенные средства контроля и управления. Компания Tesla Motors, пионер электромобилестроения, планирует запустить в серийное производство машину, которая на 90 % будет управляться автоматически. Так, во всяком случае, заявил директор компании Элон Маск [3]. Появление беспилотного автомобиля Google не только потрясает самые основы нашего представления о вождении. Оно меняет представление о компьютерах и роботах. Раньше мы принимали как нечто само собой разумеющееся, что есть профессии и роды деятельности, недоступные для автоматизации. Компьютеры умеют делать массу разных вещей, но не все на свете. В 2004 году вышла книга экономистов Френка Леви и Ричарда Мюрнейн «Executing a left turu across ancoming traffic» («Новое разделение труда: как компьютеры создают новый рынок труда»). В ней авторы убедительно доказали, что существуют реальные границы способности программистов к воспроизведению человеческих талантов, особенно тех, которые обусловлены сенсорным восприятием, распознаванием образов и концептуальными знаниями. В качестве частного примера они привели управление автомобилем по реальной трассе, требующее мгновенной интеграции громадного количества зрительных сигналов и способности безболезненно вписываться в непрерывно и неожиданно меняющуюся дорожную ситуацию. Мы сами не вполне понимаем, как это происходит, и потому идея о том, что программисты могут свести все сложности, неуловимые нюансы и случайности к набору инструкций и строчкам программного кода, показалась авторам попросту смехотворной. «Выполнение левого поворота на нерегулируемом перекрестке, – пишут Леви и Мюрнейн, – требует учета такого множества факторов, что трудно представить себе набор правил, которые могли бы имитировать поведение водителя». Авторы твердо уверены (и вместе с ними большинство остального человечества), что руль еще надолго останется в крепких руках человека-водителя [4].
Оценивая способности компьютеров, экономисты и психологи уже давно выявили два вида знания: имплицитное и эксплицитное. Имплицитное знание называют иногда процедурным и обозначают им нашу способность делать некоторые вещи, не задумываясь: читать книги, ездить на велосипеде, ловить верхний мяч, вести машину. Эти навыки являются не врожденными, а приобретенными, и одни люди усваивают их лучше, а другие хуже. И те и другие практически невозможно описать простыми словесными выражениями. Когда вы делаете поворот на забитом машинами перекрестке, то, по данным нейрофизиологов, ваш мозг просто-таки перегружен работой. Многие участки головного мозга обрабатывают бесчисленные входящие сенсорные сигналы, оценивают время и расстояние, а также приводят в согласованные движения руки и ноги [5]. Однако, если кто-нибудь попросит вас подробно описать все, что вы чувствуете и делаете, совершая поворот, вам это удастся только в очень общих чертах. Способности к выполнению подобных навыков сидят глубоко в нашей нервной системе. Эти ментальные процессы происходят без участия сознания.
В основном наши способности оценивать разнообразные ситуации и быстро принимать адекватные им решения зависят как раз от имплицитных восприятий. Благодаря им проявляются творческие способности.
Эксплицитное знание, известное также как декларативное, можно осознанно описать: как поменять колесо; изготовить фигурку журавлика из бумаги; решить квадратное уравнение. Один человек может объяснить что-то другому в виде письменного или устного руководства: делай раз, делай два и т. д.
Компьютерная программа – это, по сути,
Разделение имплицитного и эксплицитного знания остается полезной концепцией в области психологии, хотя оно и утратило часть своей актуальности в области автоматизации.
Все сказанное не означает, что компьютеры приобрели имплицитное знание. Они не стали думать, как люди, и не скоро научатся делать все, что умеем мы. Нельзя уравнять искусственный интеллект с человеческим разумом. Но когда речь идет о выполнении задач, сложных для разума или мышц, машины могут воспроизводить наши действия, не вникая в их смысл. Беспилотный автомобиль делает левый поворот на нерегулируемом перекрестке благодаря программе, а не интуиции и искусству. Но, несмотря на различие способов достижения целей, результаты действий оказываются одинаковыми. Сверхчеловеческая скорость, с какой компьютеры способны следовать инструкциям, вычислять вероятности различных параметров, получать и отправлять данные, означает, что они могут использовать эксплицитное знание для того, чтобы разобраться с задачами, которые мы решаем, применяя знание имплицитное. В некоторых случаях уникальная мощь электроники позволяет ей справляться с проблемами из области имплицитного знания, где человек пасует. В мире самоуправляемых автомобилей не будут нужны светофоры и знаки остановки. Мгновенно обмениваясь данными, транспортные средства взаимно скоординируют свое движение даже на самых загруженных перекрестках, так же как сегодня пересылается информация по магистралям и закоулкам интернета. То, что невозможно описать нашим мозгом, поддается, как выясняется, рациональному отображению в схемах микрочипов.
С возрастанием быстродействия компьютеры стали проявлять способности, считавшиеся ранее сугубо человеческими (например, распознавание сложных образов), а также делать выводы и обучаться на основании прежнего опыта. Первый урок на эту тему состоялся в 1997 году, когда шахматный компьютер Deep Blue, сделанный на фирме IBM и способный оценивать миллиард возможных ходов за пять секунд, выиграл матч из шести партий у чемпиона мира Гарри Каспарова. Автомобиль Google, который может проанализировать в секунду миллион ситуаций, кажется, готов преподать нам следующий урок. Многие весьма замысловатые наши действия в принципе не требуют участия мозга. Интеллектуальные достижения профессионалов защищены от автоматизации не больше, чем левый поворот на перекрестке для беспилотного автомобиля. Доказательства мы видим повсюду. Во всех видах деятельности компьютерные программы находят свое применение: в медицине – диагностика заболеваний; в архитектуре – проектировка здания; в юриспруденции – оценка улик, в педагогике применяют обучающие программы и оценивают студенческие работы. Компьютеры, конечно, не заменили в этих областях специалистов, но взяли на себя значительную часть их труда. Электроника и автоматика проникли и в наш досуг, в наши развлечения. Благодаря распространению смартфонов, планшетов и других небольших, доступных и портативных устройств мы теперь зависим от программного обеспечения в выполнении множества повседневных дел. Нам необходимо это для того, чтобы сэкономить на покупках, научиться готовить, заниматься спортом, и даже для того, чтобы знакомиться, влюбляться, создавать семьи и рожать детей. Инструкции GPS ведут нас по родному городу. В социальных сетях – наши друзья. Программы советуют нам, что смотреть, читать и слушать. Google и Siri дают ответы на мучившие нас вопросы. Компьютер стал незаменимым инструментом нашей ориентации в физических и социальных сферах мира. Вы только вспомните, что происходит, когда люди теряют свои смартфоны или не могут выйти в интернет. Без цифровых помощников они чувствуют себя брошенными и беспомощными. Кэтрин Хэйлс, профессор литературы из университета Дюка (Duke University), пишет в вышедшей в 2012 году книге «How We Think» («Как мы думаем»): «Когда мой компьютер выходит из строя или нарушается связь с интернетом, я чувствую себя потерянной, дезориентированной; я теряю способность работать. Да что там: я чувствую себя так, будто мне ампутировали обе руки» [6].
Зависимость от компьютеров порой вызывает у нас недовольство, но в целом мы против нее не возражаем. Мы склонны хвастаться новыми гаджетами и приложениями, и не только потому, что они полезные или стильные. В автоматизации есть нечто магическое. Видя, как iPhone идентифицирует звучащую в баре песню и находит ее в Сети, мы испытываем чувство, неведомое представителям старших поколений. Видеть команду ярко окрашенных заводских роботов, без всяких усилий собирающих солнечную батарею или реактивный двигатель, – это значит присутствовать на балете, танцорами в котором выступают движущиеся с безупречной грацией и с выверенной до долей миллиметра точностью автоматы. Люди, ездившие в автомобилях Google, рассказывают об охватившем их трепете; их мозг не мог примириться с новыми ощущениями. Сегодня мы вступаем в новый мир, где у нас на службе будут самые разнообразные автоматы, которые избавят нас от рутины, станут предупредительно исполнять любой каприз, а иногда просто составлять нам компанию. Очень скоро, как пророчат мудрецы из Кремниевой долины, у человека появятся роботы-горничные и роботы-водители. Трехмерные принтеры смогут клепать всякую всячину, чтобы потом автоматические посыльные разносили ее по домам. Наступает и манит мир «Джетсонов» [2] или, по крайней мере, «Рыцаря дорог». [3]
2
Игры Джетсоны-онлайн. Семья Джетсонов живет в мире будущего, все это в скором времени ждет человечество.
3
Аскеров Э. Рыцарь дорог. СПб.: Ленинградское издательство, 2009.
В этой ситуации трудно не испытывать душевного потрясения и гнетущей тревоги. Автоматическая коробка передач – детский сад по сравнению с автомобилем Google, но первое было предтечей второго. То был маленький шажок на пути к тотальной автоматизации. Я не могу не вспомнить разочарование, охватившее меня, когда я лишился ручки переключения передач, – я лишился необходимой мне ответственности, от которой до этого так жаждал избавиться. Если удобство автоматической коробки передач вызывало у меня тем не менее чувство утраты и, как выражаются экономисты, недогруженности, то каково мне будет ощущать себя пассажиром в собственной беспилотной машине?