Строение и законы Вселенной
Шрифт:
Таким образом любой организм представляет собой квазистационарную систему, обеспечивающую внутреннее термодинамическое равновесие системами метаболизма и управляемую прямыми и об' ратными связями в системах управления.
С учетом реальных условий протекания жизни можно представить наиболее общую картину ее взаимодействия с окружающей средой и уже на основе параметров взаимодействия произвести классификацию живых организмов.
Основными направлениями будут:
I — внешние энергия и материя, привносимые в занятое организмом пространство;
II — внешние условия (гравитация, ареал обитания, взаимодействие с другими организмами и т. д.);
III — преобразование материи
Направление I. Для подавляющей массы организмов это — космическая (в частности, солнечная) энергия, поступающая сверху, и материя (пища), поступающая сверху, снизу или находящаяся в гравитационной плоскости расположения организма.
Направление II. Для наземных организмов (в том числе птиц) важнейшими определяющими условиями будут гравитация, так как перемещение «вверх-вниз» требует наибольшего расхода энергии, и температура окружающей среды. Для водных форм жизни, взвешенных в толще воды, гравитация имеет значительно меньшее значение. Взаимодействия с другими организмами (в основном в цели питания) строятся с учетом первых двух факторов — координат и температур и определяются минимизацией усилий для достижения цели.
Направление III. Преобразование материи и энергии в организмах (обмен веществ) происходит в основном за счет химических реакций на сепарирующих оболочках в наиболее универсальном растворителе — воде. При этом направление движения материи во взвесях и растворах достаточно свободно (так как гравитация не играет доминирующей роли), в частности, из-за преимущественно сферических клеточных структур и перемен положения тела животного в пространстве.
Эти составляющие для различных органических образований можно представить наглядно, например, в векторной форме для наиболее общих классов (вертикальная координата G — гравитация).
Растения наиболее четко ориентированы вверх, пищу получают из окружающей атмосферы и снизу из почвы, внутренний обмен веществ протекает преимущественно в направлении «вверх-вниз».
Фактически указанные признаки позволяют провести классификацию организмов по первичным признакам, так как направления векторов I, II и III определяют реальные условия существования и пути изменения (приспособления) организмов.
Растения преобразуют электромагнитную энергию (свет) в потенциальную химическую, животные концентрируют химическую энергию и рассеивают ее в виде теплового излучения.
Гравитация у растений компенсируется потенциальной энергией массы, у животных — кинетической энергией передвижения. Расположение векторов определяется условиями существования организмов.
Так, для растений векторы электромагнитной энергии и гравитационной составляющей коллинеарны — угол между ними = 0.
Для животных, перемещающихся в основном по горизонтальным эквигравитационным плоскостям, угол = 90.
Грибы обычно получают пищу снизу (осмосорбционно) против силы тяжести и = 180.
У бактерий, питающихся органическими остатками, = 90 (270).
Существует большое количество переходных форм жизни, что не позволяет в рамках данной работы построить удовлетворяющую всем формальным признакам единую диаграмму, которая характеризовала бы суммарные массы, энергию и тип организма. Но если отвлечься от времени существования индивидов, то, по расчетам биологов, массы растений и животных соизмеримы, причем изменения космического потока энергии влияют на их величину. Следует также учитывать, что часть энергии (в некоторых случаях до 10 %) находится в круговороте органических сообществ, что создает дополнительные сложности при расчете биосистемы в целом. Даже в случаях высших животных этот показатель очень различается для разных видов. Так, если мы рассмотрим соотношение энергетических затрат в форме потребления кислорода при движении млекопитающих, то в логарифмической зависимости получим линейный, убывающий от увеличения массы (m) закон (рис. 6).
Основную часть энергии на создание органической массы растения получают от Солнца.
На границе атмосферы Земли ее величина составляет 1,78 1017 Дж/с, но с учетом потерь в области фотосинтеза (380–740 Нм) растения могут максимально использовать только часть:
[0,3:0,4]17 Дж/с.
Преобразование энергии в организмах происходит в пределах от так называемой красной (в сторону инфракрасного излучения) границы до порога активации основного энергоносителя —адензитрифосфата (АТР 30 кДж). Темп образования АТР составляет от долей секунды до минут (у человека 2400 раз в сутки) и может служить энергетической характеристикой организма по соотношению:
I + II = KN,
где К — энергетическая характеристика (аналог КПД использования энергии) данного организма; N— количество молекул АТР, синтезируемых в одной клеточной структуре.
Для обеспечения устойчивого состояния клеток, систем и организма в целом должно выполняться достаточно устойчивое равновесие циркуляции материи и энергии в организме (квазистационарное состояние), что осуществляется за счет сепарирующих (фильтрующих) оболочек.
Так как перераспределение материи и энергии в клетке идет в основном через всю ее оболочку {радиальносимметрично), геометрическое и физическое строение оболочки и ядра определяет интенсивность и продуктивность обмена. При этом сложность строения определяется как разнообразием способов преобразования ядром материи и энергии, так и приспособляемостью оболочки к фильтрации.
Основных случаев два.
1. Устройство ядра или внутренней полости клетки определяет сложную структуру внутренней и внешней оболочек. При этом клетка способна поглощать достаточно узкий диапазон веществ, но может приспособиться к значительному разнообразию внешних воздействий.
2. Просто устроенные клетки способны усваивать широкий диапазон веществ, но очень чувствительны к изменению внешних условий.
Вышеизложенное подтверждается сравнением простейших безъядерных одноклеточных (прокариот) и одноклеточных с ядром (эвкариот) организмов по параметрам их приспособляемости к пище и среде обитания.
По мере усложнения организма (появления иерархии фильтрующе-сепарирующих оболочек) на каждом уровне происходит преобразование материи и энергии, что требует дополнительных времени и энергетических затрат. Одновременно происходи г сужение границ приспособляемости к пище и внешним условиям.