Чтение онлайн

на главную

Жанры

Структура реальности

Дойч Девид

Шрифт:

Говорят, что правила логики впервые сформулировали, надеясь, что они обеспечат объективный и обоснованный метод разрешения всех споров. Эту надежду невозможно оправдать. Изучение самой логики открыло, что область действия логической дедукции как средства раскрытия истины жестко ограничена. При наличии существующих допущений о мире можно сделать выводы дедуктивно; но эти выводы ничуть не более обоснованны, чем допущения. Единственные высказывания, которые может доказать логика, не прибегая к допущениям, — это тавтологии — такие утверждения, как «все планеты — это планеты», которые ничего не утверждают. В частности, все реальные научные вопросы находятся за пределами той области, где можно уладить споры с помощью одной логики. Однако считается, что математика находится в пределах этой области. Таким образом, математики ищут абсолютную, но абстрактную истину, в то время как ученые утешают себя мыслью, что они могут обрести реальное и полезное знание физического мира. Но они должны принять, что это знание не имеет гарантий. Оно вечно экспериментально и вечно подвержено ошибкам. Идея о том, что науку характеризует «индукция»,

метод доказательства, который считается аналогом дедукции, но чуть более подверженным ошибкам, — это попытка извлечь все возможное из этого постижимого второсортного статуса научного знания. Вместо дедуктивно доказанных определенностей, возможно, мы удовольствуемся индуктивно доказанными «почти-определенностями».

Как я уже сказал, не существует такого метода доказательства как «индукция». Идея доказательства каким-то образом достигнутой «почти-определенности» в науке — миф. Каким образом я мог бы «почти-определенно» доказать, что завтра не опубликуют удивительную новую физическую теорию, опровергающую мои самые неоспоримые допущения относительно реальности? Или то, что я не нахожусь внутри генератора виртуальной реальности? Но я говорю все это не для того, чтобы показать, что научное знание действительно «второсортно». Ибо идея о том, что математика дает определенности — это тоже миф.

С древних времен идея о привилегированном статусе математического знания часто ассоциировалась с идеей о том, что некоторые абстрактные категории, по крайней мере, не просто являются частью структуры реальности, но даже более реальны, чем физический мир. Пифагор считал, что регулярности в природе есть выражение математических отношений между натуральными числами. «Все вещи есть числа» — таков был его девиз. Он не имел это в виду буквально, однако Платон пошел еще дальше и отрицал реальность физического мира вообще. Он считал, что наши мнимые ощущения этого мира ничего не стоят и вводят в заблуждение, и доказывал, что физические объекты и явления, которые мы понимаем, — всего лишь «тени» несовершенных копий их истинных сущностей («Форм» или «Идей»), существующих в отдельной области, которая и есть истинная реальность. В этой области, кроме всего прочего, существуют Формы чистых чисел, таких, как 1, 2, 3, …, и Формы математических действий, таких, как сложение и умножение. Мы можем воспринять некоторые тени этих Форм, когда кладем на стол одно яблоко, потом еще одно и видим, что на столе два яблока. Однако яблоки выражают «наличие одного» и «наличие двух» (и, в данном случае, «наличие яблок») несовершенно. Они не являются совершенно идентичными, а потому, в действительности на столе никогда нет двух примеров чего-либо. На это можно возразить, что число два можно также представить, положив на стол два различных объекта. Но и такое представление несовершенно, потому что в этом случае мы должны допустить, что на столе также есть клетки, отпавшие от яблок, пыль и воздух. В отличие от Пифагора. Платон занимался не только натуральными числами. Его реальность содержала Формы всех понятий. Например, она содержала Форму совершенного круга. «Круги», которые мы видим, никогда не являются действительно кругами. Они не совершенно круглые, не совершенно плоские; у них есть конечная толщина и т. д. Все они несовершенны.

Затем Платон указал задачу. Принимая во внимание все это Земное несовершенство (и он мог бы добавить, наш несовершенный сенсорный доступ даже к Земным кругам), как вообще мы можем знать то, что мы знаем о реальных, совершенных кругах? Очевидно, что мы обладаем знанием о них, но каким образом? Где Евклид приобрел знание геометрии, которое выразил в своих знаменитых аксиомах, когда у него не было ни истинных кругов, ни точек, ни прямых? Откуда исходит эта определенность математического доказательства, если никто не способен ощутить те абстрактные категории, на которые оно ссылается? Ответ Платона заключался в том, что мы получаем все это знание не из этого мира теней и иллюзий. Мы получаем его непосредственно из самого мира Форм. Мы обладаем совершенным врожденным знанием того мира, которое, как он считал, забывается при рождении, а затем скрывается под слоями ошибок, вызванных тем, что мы доверяем своим чувствам. Но реальность можно вспомнить, усердно применяя «разум», впоследствии дающий абсолютную определенность, которую никогда не может дать ощущение.

Интересно, кто-нибудь когда-нибудь верил в эту весьма сомнительную фантазию (включая самого Платона, который все-таки был очень компетентным философом, считавшим, что публике стоит говорить благородную ложь)? Тем не менее, поставленная им задача — как мы можем обладать знанием, не говоря уж об определенности, абстрактных категорий — достаточно реальна, а некоторые элементы предложенного им решения с тех пор стали частью общепринятой теории познания. В частности, фактически все математики до сегодняшнего дня без критики принимают основную идею того, что математическое и научное знание проистекают из различных источников и что «особый» источник математического знания дает ему абсолютную определенность. Сейчас этот источник математики называют математической интуицией, однако он играет ту же самую роль, что и «воспоминания» Платона об области Форм.

Математики много и мучительно спорили о том, открытия каких в точности видов совершенно надежного знания можно ожидать от нашей математической интуиции. Другими словами, они согласны, что математическая интуиция — источник абсолютной определенности, но не могут прийти к соглашению относительно того, что она им говорит! Очевидно, что это повод для бесконечных, неразрешимых споров.

Большая часть таких споров неизбежно касалась обоснованности или необоснованности различных методов доказательства. Одно из разногласий было связано с так называемыми «мнимыми» числами. Новые Теоремы об обычных, «вещественных» числах доказывали, обращаясь на промежуточных этапах доказательства к свойствам мнимых чисел. Например, таким образом были доказаны первые теоремы о распределении простых чисел. Однако некоторые математики возражали против мнимых чисел на том основании, что они не реальны. (Современная терминология все еще отражает это старое разногласие даже сейчас, когда мы считаем, что мнимые числа так же реальны, как и «вещественные».) Я полагаю, что учителя в школе говорили этим математикам, что нельзя извлекать квадратный корень из минус одного, и, поэтому они не понимали, почему кто-либо другой может это сделать. Нет сомнения в том, что они называли этот злостный порыв «математической интуицией». Однако другие математики обладали другой интуицией. Они понимали, что такое мнимые числа, и как они согласуются с вещественными. Почему, думали они, человеку не следует определять новые абстрактные категории, имеющие свойства, которые он предпочитает? Безусловно единственным законным основанием запретить это была бы логическая несовместимость требуемых свойств. (Это, по существу, современное мнение, выработанное всеобщими усилиями, математик Джон Хортон Конуэй грубо назвал «Движением Освобождения „Математиков“».) Однако общеизвестно, что никто не доказал и то, что обычная арифметика натуральных чисел является самосогласованной.

Подобным разногласиям подверглась и обоснованность использования бесконечных чисел, а также множеств, содержащих бесконечно много элементов, и бесконечно малых величин, используемых при исчислении. Дэвид Гильберт, великий немецкий математик, предоставивший большую часть инфраструктуры как общей теории относительности, так и квантовой теории, заметил, что «математическая литература переполнена бессмыслицами и нелепостями, проистекающими из бесконечности». Некоторые математики, как мы увидим, вовсе отрицали обоснованность рассуждения о бесконечных категориях. Легкий доступ к чистой математике в девятнадцатом веке мало что сделал для разрешения этих разногласий. Напротив, он только усугубил их и породил новые. По мере своего усложнения математическое рассуждение неизбежно удалялось от повседневной интуиции, что возымело два важных противоположных следствия. Во-первых, математики стали более педантичными в отношении доказательств, которые, прежде чем быть принятыми, подвергались все более суровым проверкам на соответствие нормам точности. Но во-вторых, изобрели более мощные методы доказательства, которые не всегда можно было обосновать с помощью существующих методов. И из-за этого часто возникали сомнения, был ли какой-то частный метод доказательства, несмотря на свою самоочевидность, абсолютно безошибочным.

Таким образом, к 1900 году наступил кризис основ математики, который заключался в том, что этих основ не было. Но что же произошло с законами чистой логики? Их перестали считать способными разрешить все математические споры? Удивителен тот факт, что теперь математические споры в сущности и велись о «законах чистой логики». Первым эти законы привел в систему Аристотель еще в 4 веке до н. э., тем самым заложив то, что сегодня называют теорией доказательства. Он допустил, что доказательство должно состоять из последовательности утверждений, которая начинается с каких-либо посылок и определений, а заканчивается желаемым выводом. Чтобы последовательность утверждений была обоснованным доказательством, каждое утверждение, кроме начальных посылок, должно следовать из предыдущих в соответствии с одним из постоянного набора законов, называемых силлогизмами. Типичным был следующий силлогизм

Все люди смертны.

Сократ — человек.

[Следовательно] Сократ смертен.

Другими словами, это правило гласило, что если в доказательстве появляется утверждение вида «все A имеют свойство B» (как в данном случае «все люди смертны») и другое утверждение вида «индивидуум X есть A» (как в данном случае «Сократ — человек»), то впоследствии в доказательстве обоснованно появление утверждения «X имеет свойство B» («Сократ смертен»), и это утверждение, в частности, является обоснованным выводом. Силлогизмы выражают то, что мы назвали бы правилами вывода, то есть правилами, определяющими этапы, которые допустимы при доказательстве, такими, что истина посылок переходит к выводам. Кроме того, эти правила можно применить, чтобы определить, обосновано ли данное доказательство.

Аристотель заявил, что все обоснованные доказательства можно выразить в виде силлогизмов. Но он не доказал это! А проблема теории Доказательства заключалась в том, что очень небольшое количество современных математических доказательств выражались в виде чистой последовательности силлогизмов; более того, большинство из них невозможно было привести к такому виду. Тем не менее, большинство Математиков не могли заставить себя следовать букве закона Аристотеля, так как некоторые новые доказательства казались так же самоочевидно обоснованными, как и рассуждение Аристотеля. Математики перешли на новый этап развития. Новые инструменты, такие, как символическая логика и теория множеств, позволили математикам установить новую связь между математическими структурами. Благодаря этому появились новые самоочевидные истины, независимые от классических правил вывода, и, таким образом, классические правила оказались самоочевидно неадекватными. Но какие же из новых методов доказательства были действительно безошибочными? Как нужно было изменить правила вывода, чтобы они обрели законченность, на которую ошибочно претендовал Аристотель? Как можно было вернуть абсолютный авторитет старых правил, если математики не могли прийти к соглашению относительно того, что является самоочевидным, а что бессмысленным?

Поделиться:
Популярные книги

Огни Аль-Тура. Единственная

Макушева Магда
5. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Аль-Тура. Единственная

Неудержимый. Книга X

Боярский Андрей
10. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга X

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

Гром над Империей. Часть 1

Машуков Тимур
5. Гром над миром
Фантастика:
фэнтези
5.20
рейтинг книги
Гром над Империей. Часть 1

Проклятый Лекарь V

Скабер Артемий
5. Каратель
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь V

Афганский рубеж

Дорин Михаил
1. Рубеж
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Афганский рубеж

Большая Гонка

Кораблев Родион
16. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Большая Гонка

Князь

Мазин Александр Владимирович
3. Варяг
Фантастика:
альтернативная история
9.15
рейтинг книги
Князь

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Антимаг его величества. Том III

Петров Максим Николаевич
3. Модификант
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Антимаг его величества. Том III

Совок 5

Агарев Вадим
5. Совок
Фантастика:
детективная фантастика
попаданцы
альтернативная история
6.20
рейтинг книги
Совок 5

Измена. Осколки чувств

Верди Алиса
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Осколки чувств

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII