Чтение онлайн

на главную

Жанры

Структура реальности

Дойч Девид

Шрифт:

Теперь давайте рассмотрим некоторое математическое вычисление, которое является трудновыполнимым на всех классических компьютерах, но предположим, что квантовый компьютер легко может выполнить это вычисление, задействовав интерференцию между, скажем. 10 500 вселенными. Чтобы прояснить это, пусть вычисление будет таково, что ответ после его получения (в отличие от результата разложения на множители) невозможно будет проверить с помощью легкообрабатываемых вычислений. Процесс программирования квантового компьютера для получения вычислений такого рода, обработки программы и получения результата составляет доказательство того, что математическое вычисление имеет именно этот частный результат. Но в этом случае не существует способа записать все, что произошло во время процесса доказательства, потому что большая часть этого произошла в других вселенных, и измерение состояния вычисления изменило бы интерференционные свойства и тем самым лишило бы доказательство обоснованности. Таким образом, создание старомодного объекта доказательства было бы невозможно; более того, во вселенной,

как мы ее знаем, далеко не достаточно материала, чтобы составить такой объект, поскольку в этом доказательстве этапов было бы больше, чем существует атомов в известной вселенной. Этот пример показывает, что из-за возможности квантового вычисления два понятия доказательства не эквивалентны. Интуиция доказательства как объекта не охватывает все способы, с помощью которых можно доказать математическое утверждение в реальности.

И опять мы видим неадекватность традиционного математического метода получения определенности через попытки исключить каждый возможный источник неопределенности или ошибки из нашей интуиции до тех пор, пока не останется только самоочевидная истина. Именно это и сделал Гедель. Именно это делали Черч, Пост и особенно Тьюринг, когда они пытались интуитивно постичь свои универсальные модели вычисления. Тьюринг надеялся, что его абстрактная бумажная модель настолько проста, настолько открыта и четко определена, что не зависит ни от каких допущений относительно физики, которые можно было бы исказить постижимым образом, и, следовательно, она может стать основой абстрактной теории вычисления, независимой от лежащей в ее основе физики. «Он считал, — как однажды выразился Фейнман, — что он понял бумагу». Но он ошибался. Реальная, квантово-механическая бумага очень отличается от абстрактного материала, используемого машиной Тьюринга. Машина Тьюринга является всецело классической, она не принимает во внимание возможность того, что на бумаге могут быть написаны различные символы в различных вселенных и что они могут интерферировать друг с другом. Безусловно, искать интерференцию между различными состояниями бумажной центы непрактично. Но дело в том, что интуиция Тьюринга, из-за содержания в ней ложных допущений из классической физики, заставила его удалить те вычислительные свойства его гипотетической машины, которые он намеревался сохранить. Именно поэтому результирующая модель вычисления была неполной.

Различные ошибки, которые математики во все времена допускали в том, что касается доказательства и определенности, вполне естественны. Настоящее обсуждение имеет своей целью привести нас к ожиданию того, что современная точка зрения тоже не будет вечной. Но уверенность, с которой математики натыкались на эти ошибки, а также их неспособность признать даже возможность ошибки во всем этом, на Мой взгляд, связана с древней и широко распространенной путаницей между методами математики и ее предметом. Сейчас я поясню это. В отличие от отношений между физическими категориями, отношения между абстрактными категориями независимы от каких бы то ни было непредвиденных фактов и законов физики. Они абсолютно и объективно определяются автономными свойствами самих абстрактных категорий. Математика, изучающая эти отношения и свойства, таким Образом, изучает абсолютно необходимые истины. Другими словами, Истины, изучаемые математикой, абсолютно определенны. Но это не говорит ни об определенности самого нашего знания этих необходимых истин, ни о том, что методы математики дают своим выводам необходимую им истинность. Как-никак, математика изучает еще и ложные утверждения и парадоксы. И это не означает, что выводы подобного изучения непременно являются ложными или парадоксальными.

Необходимая истина — это всего лишь предмет математики, а не награда за то, что мы занимаемся математикой. Математическая определенность не является и не может являться целью математики. Ее целью является даже не математическая истина, определенная или какая-нибудь еще. Ее целью является и должно являться математическое объяснение.

Почему же тогда математика работает так, как она работает? Почему она ведет к выводам, которые, несмотря на их неопределенность. Можно принимать и без проблем применять, по крайней мере, в течение тысячи лет? В конечном счете, причина в том, что некоторая часть нашего знания физического мира столь же надежна и непротиворечива. А когда мы понимаем физический мир достаточно хорошо, мы также понимаем, какие физические объекты имеют общие свойства с абстрактными. Но, в принципе, надежность нашего знания математики остается второстепенной по отношению к нашему знанию физической реальности. Обоснованность каждого математического доказательства полностью зависит от того, правы ли мы относительно правил, управляющих поведением каких-либо физических объектов, будь то генераторы виртуальной реальности, чернила и бумага или наш собственный мозг.

Таким образом, математическая интуиция — это вид физической интуиции. Физическая интуиция — набор эмпирических правил (некоторые из которых возможно врожденные, а большая часть — развившиеся в детстве), о том, как ведет себя физический мир. Например, у нас есть интуиция существования физических объектов и того, что эти объекты обладают определенными свойствами: формой, цветом, весом и положением в пространстве, некоторые из этих свойств существуют, даже когда за этими объектами не наблюдают. Другая интуиция заключается в том, что существует физическая переменная — время — по отношению к которой изменяются свойства, но, тем не менее, объекты способны сохранять свою идентичность с течением времени. Еще одна интуиция заключается в том, что объекты взаимодействуют и что это взаимодействие может изменить некоторые их свойства. Математическая интуиция описывает способ демонстрации свойств абстрактных категорий физическим миром. Одним из таких направлений интуиции является абстрактный закон или, по крайней мере, объяснение, лежащее в основе поведения объектов. Интуицию, предполагающую, что пространство допускает замкнутые поверхности, отделяющие «внутреннюю часть» от «наружной части», можно уточнить, преобразовав ее в математическую интуицию множества, разделяющего все на члены и нечлены этого множества. Однако дальнейшее уточнение математиками (начиная с опровержения Расселом теории множеств Фреге) показало, что эта интуиция перестает быть точной, когда рассматриваемое множество содержит «слишком много» членов (слишком большую степень бесконечности членов).

Даже если бы хоть какая-то физическая или математическая интуиция была врожденной, это не предоставило бы ей какого-то особого авторитета. Врожденную интуицию невозможно воспринимать как суррогат «воспоминаний» Платона о мире Форм. Ибо ложность многих направлений интуиции, которые случайно развились у людей в процессе эволюции, — банальное наблюдение. Например, человеческий глаз и математическое обеспечение, которое им управляет, воплощают ложную теорию о том, что желтый свет состоит из смеси красного и зеленого света (в смысле, что желтый свет дает нам точно такое же ощущение как смесь красного и зеленого света). В реальности все три типа света имеют разные частоты и не могут быть созданы посредством смешивания света других частот. Тот факт, что смесь красного и зеленого света кажется нам желтым светом, не имеет ничего общего со свойствами света, но связан со свойствами наших глаз. Это результат компромисса, имевшего место на каком-то этапе отдаленной эволюции наших далеких предков. Существует только возможность (хотя я в нее не верю), что геометрия Евклида или логика Аристотеля каким-то образом встроены в структуру нашего мозга, как считал философ Иммануил Кант. Но это логически не означало бы их истинности. Даже если представить еще более невероятный случай, что у нас есть врожденная интуиция, от которой мы не в состоянии избавиться, такая интуиция, тем не менее, не стала бы необходимой истиной.

Значит, реальность действительно имеет более объединенную структуру, чем это было бы возможно, если бы математическое знание можно было проверить с определенностью. А следовательно, ее структура — это иерархия, как и считалось традиционно. Математические категории являются частью структуры реальности, поскольку они сложны и автономны. Создаваемая ими реальность некоторым образом похожа на область абстракций, о которой размышляли Платон и Пенроуз: несмотря на то, что по определению они неосязаемы, они объективно существуют и имеют свойства, независимые от законов физики. Однако именно физика позволяет нам приобрести знание об этой области. И она накладывает строгие ограничения. Тогда как в физической реальности постижимо все, постижимые математические истины в точности составляют бесконечно малое меньшинство, которое оказывается в точности соответствующим какой-то физической истине — как тот факт, что если определенными символами, написанными чернилами на бумаге, манипулировать определенным образом, появятся другие определенные символы. То есть, это и есть те истины, которые можно передать в виртуальной реальности. У нас нет другого выбора, кроме как принять, что непостижимые математические категории тоже реальны, т. к. они сложным образом возникают в наших объяснениях постижимых категорий.

Существуют физические объекты, например, пальцы, компьютеры и мозг, поведение которых может моделировать поведение определенных абстрактных объектов. Таким образом, структура физической реальности дает нам окно в мир абстракций. Это очень узкое окно, оно предоставляет только ограниченный диапазон перспектив. Некоторые из структур, которые мы видим из него, например, натуральные числа или правила вывода классической логики, кажутся такими же важными или «фундаментальными» для абстрактного мира, какими глубокие законы природы являются для физического мира. Но эта видимость может ввести в заблуждение. Поскольку действительно мы видим только то, что некоторые абстрактные структуры фундаментальны по отношению к нашему пониманию абстракций, у нас нет никакой причины считать, что эти структуры объективно важны в абстрактном мире. Просто некоторые абстрактные категории ближе, чем другие, и их проще увидеть из нашего окна.

Терминология

Математика — изучение абсолютно необходимых истин.

Доказательство — способ установления истинности математических высказываний.

(Традиционное определение): последовательность утверждений, которая начинается с некоторых посылок, заканчивается желаемым выводом и удовлетворяет определенным «правилам вывода».

(Лучшее определение): вычисление, моделирующее свойства какой-то абстрактной категории, результат которого устанавливает, что абстрактная категория обладает данным свойством.

Математическая интуиция (традиционное) — высший самоочевидный источник доказательства в математическом рассуждении.

(Действительное): множество теорий (осознанных и неосознанных) о поведении определенных физических объектов, поведение которых моделирует поведение интересных абстрактных категорий.

Интуиционизм — доктрина, связанная с тем, что все рассуждение об абстрактных категориях ненадежно, кроме того случая, когда оно основано на прямой самоочевидной интуиции. Это математическая версия солипсизма.

Поделиться:
Популярные книги

Болотник 3

Панченко Андрей Алексеевич
3. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 3

Вечный. Книга V

Рокотов Алексей
5. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга V

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Приручитель женщин-монстров. Том 1

Дорничев Дмитрий
1. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 1

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Все еще не Герой!. Том 2

Довыдовский Кирилл Сергеевич
2. Путешествие Героя
Фантастика:
боевая фантастика
юмористическое фэнтези
городское фэнтези
рпг
5.00
рейтинг книги
Все еще не Герой!. Том 2

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Аномалия

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Аномалия

(Противо)показаны друг другу

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.25
рейтинг книги
(Противо)показаны друг другу

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й