Чтение онлайн

на главную

Жанры

Том 19. Ипотека и уравнения. Математика в экономике

Салес Жузеп

Шрифт:

Каждый инвестиционный проект, подобно живому существу, имеет свой жизненный цикл. Денежные выплаты рассчитываются в зависимости от срока инвестирования.

Инвесторы часто задаются вопросом: будет ли положительный денежный поток в течение жизненного цикла инвестиционного проекта достаточным, чтобы окупить вложенные средства. В течение жизненного цикла проекта покупательная способность денег из-за инфляции снижается, поэтому инвестора интересует не только то, сможет ли он вернуть вложенную сумму, но и то, будет ли покупательная способность полученных доходов, скорректированная с учетом инфляции, больше покупательной способности вложенных средств.

Очевидно, что 100 долларов сегодня стоят больше, чем 100 долларов через четыре года, особенно если ожидается, что в следующие четыре года инфляция будет составлять 5 % годовых. Если мы будем получать годовой доход, например, равный 100

долларам, в этом году и в последующие четыре года, то очевидно, что 100 долларов, которые мы получим в следующем году, из-за инфляции будут составлять всего 95 % от своей нынешней стоимости. А на третий год стоимость полученных нами 100 долларов будет эквивалентна всего 90,25 доллара.

Реальная стоимость денег при условии, что мы получаем годовой доход в размере 100 долларов в течение 5 лет при уровне инфляции в 5 %, то есть реальная стоимость 500 долларов, составит:

первый год: 100;

второй год: 100/1,05 = 95,23809524;

третий год: 95,23809524/1,05 = 90,70294785;

четвертый год: 90,70294785/1,05 = 86,38375985;

пятый год: 86,38375985/1,05 = 82,27024748.

* * *

ВЫВОД ФОРМУЛЫ ЧДД

Расчет ЧДД (чистой приведенной стоимости, или чистого дисконтированного дохода от инвестиционного проекта) производится следующим образом. Рассмотрим проект, требующий начальных вложений а0, который приносит ежегодный доход. Обозначив денежный поток (положительный или отрицательный) в году через аi, срок проекта — через n лет, уровень инфляции — через r, получим приведенную стоимость дохода за второй год а2, то есть сумму денег, обладающую той же покупательной способностью: а2 = а/(1 + r). Логично, что стоимость денежной единицы во втором периоде из-за инфляции будет меньше, чем в первом.

Обобщив эти рассуждения на весь жизненный цикл проекта в n лет и сложив величины всех годовых денежных потоков, получим приведенное значение суммарного денежного потока за лет:

ni=1 аi  = а1 а а3 + а4 + a5 +… + аn.

Приведенный доход в каждом периоде рассчитывается следующим образом:

И так далее до года n: аn  = а1(1 + r)– (n-1).

Аналогично, если в нулевом году мы вложили средства i на n лет, считая с нулевого года, и каждый год начиная с первого будем получать положительный или отрицательный денежный поток а1 а а3 +… + аn, чистый дисконтированный доход от инвестиции, учитывая прогнозный уровень инфляции r, составит:

ЧДД = — a0 + a1(1 + r)– 1 + a2(1 + r)– 2 +… + an(1 + r)– n

где а0 имеет отрицательное значение, так как инвестиция осуществляется в нулевой год.

* * *

Приведенная величина денежного потока в размере 100 долларов в год в течение 5 лет с учетом инфляции в следующие четыре года будет равна:

100 + 95,23809524 + 90,70294785 + 86,38375985 + 82,27024748 = 454,59505042.

Следовательно, приведенная величина совокупного денежного потока за пять лет будет на 9,0809899 % меньше номинала в 500 долларов.

Рассмотрим пример с вложением в размере I = 1000 000 евро в оборудование, срок службы которого составляет 10 лет. Жизненный цикл проекта равен десяти годам, считая с нулевого года, в котором осуществляется инвестирование. Прогнозный годовой доход на следующие 10 лет приведен в таблице.

Инвестор хочет знать, достаточно ли этих доходов для того, чтобы окупить вложенные средства и получить определенную прибыль, при условии что прогнозный уровень инфляции составит 5 %. По формуле ЧДД имеем:

a0 + I

ЧДД = — a0 + a1(1 + r)– 1 + a2(1 + r)– 2 +… + an(1 + r)– n =

= -1000 000 + 15 000(1,50)– 1 +16 000(1,50)– 2 + 120 000(1,50)– 3 + 150 000(1,50)– 4 + 80 000(1,50)– 5 + 1 50 000(1,50)– 6 + 170 000(1,50)– 7 + 180 000(1,50)– 8 + 125 000(1,50)– 9 + 250 000(1,50)– 10 = -92 820,20 евро.

Проведя расчеты, получим для потока доходов приведенные значения, сумма которых будет равной —92 820,20. Это означает, что при данном потоке доходов инвестор не сможет окупить вложенные средства и, более того, потеряет 92 820,20 евро.

Еще одним показателем, используемым для оценки окупаемости инвестиций, является внутренняя норма доходности. Это процентная ставка доходности, при которой инвестор сможет полностью окупить вложенные средства, то есть чистый дисконтированный доход от проекта будет равен нулю, а при превышении этой минимальной ставки доходности вложение средств будет выгодным. Как правило, внутренняя норма доходности проекта сравнивается с процентной ставкой или ценой денег. Если внутренняя норма доходности меньше базовой процентной ставки, реализация инвестиционного проекта не рекомендуется. Внутренняя норма доходности (ВНД) рассчитывается для ЧДД = 0, то есть:

ЧДД = — a0 + a1(1 + r)– 1 + a2(1 + r)– 2 +… + an(1 + r)– n= 0

где а0Iвеличина начальных вложений. Суть задачи заключается в том, чтобы найти неизвестную r, которая в этом случае будет внутренней нормой доходности.

В нашем примере значение г, при котором выполняется условие ЧДД = 0 для данных, приведенных в таблице, составляет г = 3,45 % (этот результат можно получить с помощью специальных инструментов, электронных таблиц или вручную, последовательно выполнив все необходимые расчеты).

Как рассчитываются зарплаты

Зарплаты зависят от соотношения предложения (со стороны рабочей силы) и спроса (со стороны компаний) на рынке труда. В разные годы были созданы различные теории, описывающие механизмы регулирования зарплат. Экономисты классической школы считали, что для выплаты заработной платы рабочим предназначается часть накопленного капитала, называемая зарплатным фондом. Величина зарплаты является частным от деления зарплатного фонда на число рабочих часов. Вопрос заключался в том, чтобы определить величину накопленного капитала и его часть, предназначенную не для расходов на оборудование, недвижимость и сырье, а на выплату зарплат.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Идеальный мир для Социопата 4

Сапфир Олег
4. Социопат
Фантастика:
боевая фантастика
6.82
рейтинг книги
Идеальный мир для Социопата 4

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

(Не)свободные, или Фиктивная жена драконьего военачальника

Найт Алекс
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Книга пяти колец. Том 2

Зайцев Константин
2. Книга пяти колец
Фантастика:
фэнтези
боевая фантастика
5.00
рейтинг книги
Книга пяти колец. Том 2

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Месть Паладина

Юллем Евгений
5. Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Месть Паладина