Том 19. Ипотека и уравнения. Математика в экономике
Шрифт:
(6)
где С0 — сумма кредита.
* * *
ПОСЛЕДОВАТЕЛЬНОСТИ
Геометрическая прогрессия — одна из простейших последовательностей, то есть это упорядоченное множество чисел, значение определенного члена которого можно вычислить с помощью математической формулы с переменной, указывающей место этого члена в последовательности.
Указанная формула задает общий член последовательности. Как правило, это функция аn = f(n), где n — порядковый номер члена последовательности.
Существуют другие последовательности, члены которых можно вычислить с помощью формулы, в которой фигурируют один или несколько предшествующих членов: например, последовательность Фибоначчи 1, 1, 2, 3, 5, 8, 13 в которой каждый член является
В каждой последовательности необходимо указывать значение начального члена (или членов) и их количество (если последовательность является ограниченной). Если последовательность содержит бесконечное число членов, ее можно продолжать сколь угодно долго, вычисляя значения новых членов по формуле общего члена. Существуют возрастающие последовательности (значения их членов последовательно увеличиваются) и убывающие (значения их членов последовательно уменьшаются), которые могут быть ограниченными или неограниченными.
Последовательности широко используются в финансовой математике. Например, последовательность, члены которой обозначают сумму простых процентов, которые должны быть уплачены ежегодно при начальном капитале, равном 1, и процентной ставке, равной 20 %, выглядит так: 1; 1,2; 1,4; 1,6; 1,8; 2,0; 2,2;… Это неограниченная возрастающая последовательность, общий член которой выражается формулой an = 1 + 0,2•n.
Последовательность, члены которой обозначают сумму сложных процентов, которые должны быть уплачены ежегодно при начальном капитале, равном 1, и процентной ставке, равной 20 %, выглядит так: 1; 1,22; 1,23; 1,24;… Это неограниченная возрастающая последовательность, общий член которой выражается формулой аn = (1 + 0,2)n.
Последовательность 21, 23, 25, 27, 29, 31, … - это неограниченная возрастающая последовательность, общий член которой выражается формулой аn = 21 + 2(n — 1); a1 = 21.
Последовательность 1, 5, 25, 125, 625, 3125, … - это неограниченная возрастающая последовательность, общий член которой выражается формулой an = 5 n-1; а1 = 1.
Последовательность 1, 1/3, 1/5, 1/7, 1/9… - это неограниченная убывающая последовательность, общий член которой может быть найден по формуле аn = 1/(2n — 1); a1 = 1
Наконец, 1, 1/7, 1/49, 1/343, 1/2401, неограниченная убывающая последовательность, общий член которой выражается формулой аn = 1/(7n-1); а1 = 1.
Когда мы запрашиваем кредит, то подписываем договор, в котором закрепляются условия кредитования: сумма и периодичность платежей, вид процентов, эквивалентная процентная ставка (в случаях когда срок кредита составляет меньше года), а также действия, предпринимаемые в случае невыполнения одной из сторон своих обязательств.
Если платежи осуществляются в конце расчетного периода, величину фиксированного платежа следует рассчитывать по формуле, которую мы вывели в предыдущем разделе. Часть фиксированного платежа идет в уплату процентов, остаток — в уплату основного долга. В конце каждого периода сумма основного долга к уплате уменьшается, следовательно, уменьшается и сумма процентов к уплате, а часть платежа, направленная в уплату основного долга, последовательно увеличивается.
На основе этих данных составляется график выплат по кредиту, который позволяет в любой момент времени определить, какая часть основного долга выплачена, а какая — подлежит уплате. Далее в качестве примера приведен график платежей по кредиту суммой 10 000 евро под 5 % годовых сроком на пять лет. В этих условиях рассчитывается сумма годового платежа, составляющая 2309,75 евро.
Эта величина получена по формуле (6):
График платежей по кредиту 1.
Как вы можете видеть, с течением времени и по мере внесения платежей сумма основного долга, подлежащего уплате, уменьшается. Как следствие, уменьшается и сумма процентов, а доля платежа, идущая в уплату основного долга, растет.
Может случиться так, что человеку или семье нужно выплачивать сразу несколько кредитов. Например, если человек, взявший кредит, описанный в предыдущем примере, возьмет второй кредит на сумму 30000 евро со сроком погашения 10 лет под 8 % годовых, платеж по которому составляет 4470,88 евро, общая сумма платежей будет составлять 6780,63 евро.
График платежей по кредиту 2.
Если этому человеку не удается вовремя вносить платежи по кредитам, он может обратиться в банк или другое финансовое учреждение, выдавшее кредит, с просьбой о его реструктуризации под более низкие проценты, а главное, при меньшем размере платежей, так как, например, он не может вносить свыше 5000 евро ежегодно. Организация, выдавшая кредит, может предложить объединить два кредита в один суммой 40000 евро под 6 %. Задача заключается в том, чтобы определить срок погашения нового кредита при условии, что ежегодный платеж не превышает 5000 евро.
Чтобы рассчитать срок нового кредита, нужно выразить переменную n из формулы (6) для расчета платежа:
Разделив обе части равенства на С0, получим
Затем, разделив числитель и знаменатель на (1 + i)n, имеем:
Перейдем к логарифмам:
< image l:href="#"/>Вынесем число лет n в левую часть:
Подставив в эту формулу значения a, i и С0, получим:
Если мы составим график погашения кредита, то увидим, что на 11-м году остаток долга к уплате будет составлять 1073,73 евро, что соответствует 21,5 % платежа. Следовательно, срок кредита составляет 11 лет плюс 22 % года, то есть 11 лет и 80 дней.
График платежей по реструктуризированному кредиту.
Ипотечные кредиты, или просто ипотека, — это кредиты с фиксированной суммой платежа и переменной процентной ставкой, которая зависит от колебаний базовой процентной ставки. При изменении процентной ставки составляется новый график платежей при том же сроке кредита. Как правило, процентная ставка по ипотеке равна официальной базовой процентной ставке, увеличенной на несколько пунктов или десятых долей пункта. В качестве базовой процентной ставки обычно используется межбанковская процентная ставка — например, EURIBOR для еврозоны или процентная ставка, по которой продаются и приобретаются ипотечные кредиты на кредитном рынке. При подписании ипотечного договора указывается базовая процентная ставка (EURIBOR за один квартал, один год и т. д.), а также число пунктов, на которые она увеличивается, и сроки пересмотра процентной ставки по кредиту (раз в год, раз в квартал и т. д.).
Изменение процентной ставки по ипотечному кредиту может стать неприятным сюрпризом. Например, если семья взяла ипотечный кредит на сумму 300 000 евро сроком на 20 лет с процентной ставкой, равной базовой процентной ставке (например, EURIBOR) плюс 0,5 пункта, когда эта ставка равнялась 2 % (в этом случае процентная ставка по кредиту составит 2,5 % годовых), то сумма годовых платежей равняется 19244,14 евро, то есть 1603,68 евро в месяц (эта сумма получена делением годовой суммы платежей на 12). Но если базовая процентная ставка возрастет до 5 %, то при следующем пересмотре ставка по кредиту повысится до 5,5 % годовых, и сумма годовых платежей составит уже 25103,80 евро (а месячный платеж будет равен 2091,98 евро), то есть платежи по кредиту возрастут на 30,45 %. Впрочем, бывает и наоборот: когда базовая процентная ставка снижается, существенно уменьшается и сумма платежа.
Страховые компании покрывают риски предприятий, семей и отдельных лиц, предлагая страхование от несчастных случаев, автомобильных аварий, болезней и смерти (страхование жизни), страхование жилья, медицинское страхование, страхование от различных стихийных бедствий (пожаров, наводнений), страхование гражданской ответственности и т. д. Для покрытия рисков страховые компании должны рассчитать сумму, которую вносит клиент, при этом деятельность компании с учетом всех необходимых расходов на покрытие возможного ущерба должна приносить прибыль учредителям.