Том 19. Ипотека и уравнения. Математика в экономике
Шрифт:
Подставив в эту формулу исходные значения, получим процентную ставку
* * *
Процентные ставки по кредитам
Как правило, потребители или предприниматели, которые не располагают достаточными средствами для приобретения товаров длительного пользования, промышленного или торгового оборудования, обращаются в банк за кредитом.
Погашение обычных и ипотечных кредитов осуществляется периодическими платежами (раз в месяц, квартал, полугодие, год и т. д.), в этих платежах часть суммы идет на уплату процентов, а остаток — на погашение основного долга.
Большинство потребительских и ипотечных кредитов выплачиваются фиксированными платежами, то есть их размер остается неизменным. Платежи могут осуществляться в начале или в конце периода (как правило — в конце периода), при этом выплачиваемая сумма процентов и основного долга будет отличаться.
Однако существуют и другие способы погашения кредитов: в некоторые периоды могут выплачиваться только проценты, сумма платежа может изменяться, при этом в каждом периоде будет выплачиваться фиксированная сумма в счет основного долга плюс проценты по кредиту. Такие платежи называются дифференцированными. Их величина меняется: они включают фиксированную сумму в счет уплаты основного долга и переменную сумму процентов, начисленных на остаток долга по кредиту.
Чаще используются так называемые аннуитетные платежи. Размер аннуитетных платежей (как правило, выплачиваемых в конце расчетного периода) фиксирован. Часть аннуитетного платежа идет в уплату процентов, часть — в уплату основного долга по кредиту. В первые годы большую часть аннуитетных платежей составляют проценты и лишь малая часть идет в уплату долга по кредиту. С течением времени доля выплачиваемых процентов в каждом платеже уменьшается, а доля, идущая в уплату основного долга, возрастает. Чтобы рассчитать размер аннуитетного платежа по кредиту в размере С0 с процентной ставкой i, выданному на n расчетных периодов (лет), нужно использовать формулу суммы геометрической прогрессии.
Геометрическая прогрессия — это последовательность чисел, в которой каждое последующее число начиная со второго получается из предыдущего умножением его на определенное число r, которое называется знаменателем прогрессии. Так, последовательность чисел а1, а2, а3, а4…, аn-1, аn (индекс обозначает порядковый номер: первый член последовательности обозначается цифрой 1, последний — n) является геометрической прогрессией тогда, когда для данного знаменателя r выполняется соотношение: а2 = а1•r, а3 = а2•r, …, аn = аn-1•r, так, что r = аn/аn-1. Выразив члены геометрической прогрессии через ау получим:
a1 = a1
a2 = a1•r
a3 = a1•r2
……
an = a1•rn-1
Сумма этой геометрической прогрессии Sn равна:
S = а1 + а2 + а3 + … + аn-1 + аn (1)
Если умножить обе части равенства (1) на знаменатель r, получим:
r•Sn = r•(а1 + а2 + а3 + … + аn-1 + аn) = r•а1 + r•а2 + r•а3 + … + r•аn-1+ r•аn
r•Sn = а2 + а3 + … + аn + r•аn (2)
(если
Вычтя из равенства (2) равенство (1), то есть r•Sn — Sn, получим:
r•Sn — Sn = — а1 + r•аn; Sn•(r — 1) = r•an — a1,
откуда
(3)
Это формула суммы геометрической прогрессии. Учитывая, что аn = a1•rn-1 и подставив это равенство в (3), имеем:
Вот еще одна форма записи суммы геометрической прогрессии:
(4)
Для кредита с аннуитетным платежом а сроком n лет и процентной ставкой i будущая стоимость капитала Сn, выплаченная в виде суммы платежей а за n расчетных периодов, будет равна:
Сn = a•(1 + i)0 + a•(1 + i)1 +… + a•(1 + i) n-2 + a•(1 + i) n-1 = a + a•(1 + i)1 + … + a•(1 + i)n-2 + a•(1 + i)n-1
Результат является суммой геометрической прогрессии, первый член которой равен а, знаменатель — (1 + i).
Применив формулу (4) суммы геометрической прогрессии, получим
(5)
Учитывая, что Сn = C0•(1 + i)n, и подставив это значение в (3), имеем:
Перенеся переменную а, обозначающую сумму аннуитетного платежа, в левую часть, получим формулу для расчета суммы аннуитетного платежа по кредиту: