Трехмерный мир. Евклид. Геометрия
Шрифт:
РИС. 1
РИС. 2
Это был самый настоящий учебник, об утере которого можно только сожалеть, так как он прояснил бы, какие ошибки Евклид считал геометрическими, а какие — логическими.
Еще одно утерянное сочинение, которое цитирует Папп, — «Поверхностные места». Содержание этого свода текстов по высшей
«Геометрическое место точек, при котором отношение между расстоянием от заданной точки [фокусом] и от заданной прямой [директрисой] остается постоянным, является коническим сечением: эллипсом, параболой или гиперболой в зависимости от того, меньше, равно или больше единицы это расстояние».
Сочинение «Поризмы» включало 171 предложение, 38 лемм и 29 классов поризмов. Специалисты считают, что потеря этого труда является большой утратой. Евклид рассказывает о том, как можно получить неопределенные геометрические объекты, когда не заданы все их необходимые характеристики. Таким образом, поризм — это гибрид проблемы и теоремы: можно установить его наличие, но невозможно его продемонстрировать, так как он неопределен. В «Началах» термин «поризм» употребляется в значении непосредственного следствия из только что доказанной теоремы.
О «Конических сечениях» Франсиско Вера, переводчик «Начал» на испанский язык, пишет:
«...об их содержании мы можем только строить догадки. Современные критики полагают, что они были адаптацией сочинения Аристея на ту же тему и на основе него впоследствии написал свой трактат Аполлоний. Архимед несколько раз упоминает о различных свойствах конических сечений, которые, как он считал, были включены в сочинение Евклида».
Портрет работы фламандского художника Юстуса ван Гента называется «Евклид из Мегары» (1474), хотя на самом деле на нем изображен Евклид Александрийский.
Обложка «Математического собрания» Паппа Александрийского, издание 1589 года.
Марка Республики Сьерра Леоне с фрагментом «Афинской школы» Рафаэля, на которой изображен Евклид, делающий измерения циркулем.
ВОПРОС 8 ИЗ «ОПТИКИ» ЕВКЛИДА
«Оптика» имеет такую же структуру, как «Начала». В восьмом предложении Евклид дает геометрическое доказательство того, что видимые размеры двух равных и параллельных фигур обратно пропорциональны расстоянию от них до глаза. Возьмем два равных отрезка АВ и GD, расположенных на разном расстоянии от глаза Е. Проведем отрезки АЕ и EG. Взяв Е в качестве центра и EZ — за радиус, проведем часть окружности HZF. Треугольники EZG и EZD больше и меньше круговых секторов EZH и EZF соответственно.
Соотношение
EZG/сектор (EZH) > EZD/сектор (EZF)
Подставив другие значения, получаем
EZG/EZD > сектор (EZH)/сектор (EZF)
И объединив их, получаем
EZG/EZD = EZG/EZD + 1 > сектор (EHF)/сектор (EZF) = сектор (EZH)/сектор (EZF) + 1
Но EZG/EZD = GD/DZ = AB/DZ, поскольку GD=AB.
Поскольку AB/DZ = BE/ED получим:
BE/ED > сектор (E/HF)/сектор (EZF)
Соотношение между двумя отрезками одной окружности равно соотношению между соответствующими углами, то есть
BE/ED > (<НЕF)/(<ZEF) .
Этот труд также был утерян. Возможно, он был сводом всех знаний того времени о конических сечениях и имел педагогическую направленность.
Во введении мы сказали, что Пифагор выделял четыре математы. Евклид должен был рассмотреть их все, если хотел предложить полный образовательный курс математики. Неудивительно, что ему приписываются следующие тексты.
Законы природы — это математические мысли бога.
Евклид
«Явления» — книга о началах астрономии, где описывается видимая часть движущейся небесной сферы (кроме движения планет). В ней рассматриваются восходы и закаты звезд и подразумевается, что читатель знаком с основами сферической геометрии, которая не объясняется в «Началах». Небольшой трактат «Начала музыки», об авторстве которого нет точных сведений, содержит теорию музыкальных интервалов, изложенную в духе пифагорейской школы. «Оптика» — сочинение о перспективе, в котором, как и в «Явлениях», ставится вопрос о нашем знании того, что мы видим. Его цель — установить размеры видимого в зависимости от положения наблюдателя и от масштабов наблюдаемого объекта. Евклид утверждал, что видимость создается по направлению от глаза к предмету, что считалось верным, пока арабский эрудит аль-Хайсам (965-1039) в своем труде «Китаб аль-Маназир» («Книга оптики») не заявил прямо противоположное: мы видим, поскольку глаз получает один или несколько лучей света, отражаемых предметом. Несмотря на это книга Евклида считается одним из важнейших трудов по оптике из тех, что предшествовали работам Ньютона, а такие мыслители Возрождения, как Филиппо Брунеллески, Леон Баттиста Альберти и Альбрехт Дюрер, опирались на Евклида при разработке собственных трактатов о перспективе.
Авторство «Катоптрики» весьма спорно. Тем не менее необходимо сказать, что в ней приведено строгое геометрическое доказательство закона отражения света. Он гласит, что солнечные лучи отражаются под равными углами относительно горизонтальной (или вертикальной) оси. На примере рисунка 1 угол падения 0 равен углу отражения Евклид основывается на геометрическом предложении из Книги 1 «Начал»:
РИС.1