Трехмерный мир. Евклид. Геометрия
Шрифт:
Ледамант, Архит и Теэтет
Жили в одно время с Платоном. Благодаря им появились новые теоремы и геометрия стала более научной.
Результаты книг X и XIII.
Леонт
Составил свои «Начала» и нашел условия, при каких некоторые задачи могут быть разрешены и при каких нет.
Евдокс
Увеличил число так называемых общих теорем и, воспользовавшись результатами Платона о сечениях, разработал множество их видов.
Книга V:определения 4 и 5 и общие предложения.
Книга X: предложения 1 и 2.
Книга XII: предложения 5,6, 7 и 10.
Менехм
Первый был учеником Евдокса, второй известен как его брат. Сделали геометрию еще более совершенной.
Филипп из Менде
Работал под руководством Платона. С ним геометрия достигла зрелости.
Сочинение Прокла написано под явным влиянием «Истории геометрии» Евдема Родосского и неоплатонизма. В нем не указаны имена астрономов — последователей Евдокса, не упоминаются перипатетики и сам Аристотель, а также Аристей Старший, который, возможно, был отцом учения о конических сечениях и геометрических местах. В нем нет Гиппаса из Метапонта и Филолая, нет софистов Антифонта, Брисона и Гиппия Элидского, нет атомистов Парменида, Зенона и Демокрита и даже Автолика Питанского, наконец, в комментариях не сказано ни слова об ученых-арифметиках. И все же этот текст заслуживает пристального внимания.
Фалесу и Пифагору различные авторы приписывают одни и те же достижения, а в случае с Гиппократом мы опираемся на свидетельство римлянина Симпликия, в свою очередь ссылающегося на «Историю геометрии» Евдема.
ГЛАВА 2
Структура «Начал»
Не меньшее значение, чем содержание, имеет структура «Начал»: Евклид отталкивается от краткого списка гипотез и переходит к дедуктивному доказательству многочисленных предложений. Такой подход сообщает этому произведению основательность, кажущуюся непогрешимой. Однако этот крепкий фундамент евклидового здания состоит в том числе и из кирпичиков общих представлений о математике, восходящих к философии Платона и Аристотеля.
«Начала» являются прямым наследием философии Платона и Аристотеля. По Платону, материальные объекты также являются идеальными, то есть существуют в мире идей. Аристотель возражал против этого, и можно утверждать, что текст Евклида написан под влиянием Аристотеля. И все же платоновская философия математики особо изучалась в Академии, о чем свидетельствует надпись над входом: «Да не войдет сюда не знающий геометрии».
Мы же ограничимся комментарием к аналогии разделенной линии, о которой Платон пишет в шестой книге «Государства» (см. схему на следующей странице). Существуют три воплощения предмета «кровать»: «кровать, созданная Богом», «кровать, сделанная плотником» и «кровать, нарисованная художником». «Бог, — говорит Платон, — желая быть истинным создателем истинно существующей кровати, [...] создал ее по природе своей единственной». Плотник же делает копии. А художник копирует плотника, но не «настоящую кровать».
В этом примере затрагивается вопрос существования, один из основных в платоновской философии, поскольку, по Платону, невозможно от эпистемологии (то есть знания или познания) перейти к онтологии (реальности, являющейся предметом познания). Он задается следующими вопросами: все ли кровати реальны, или же только некоторые, или ни одна? Что мы подразумеваем под «реальным», точнее, о какой реальности мы говорим, когда утверждаем, что научное знание состоит в «истинном познании реальности»? Если мы сузим вопрос до области математики, то как надо понимать математические объекты (вопрос эпистемологического характера) и что мы можем сказать об их существовании (проблема онтологического характера)?
По Платону, есть две реальности: реальность умопостигаемого мира идей, которую можно познать истинным знанием, и зримая реальность окружающего нас мира, о которой можно иметь лишь мнение. Приводя аналогию с разделенной линией, философ говорит об умопостигаемом, имея в виду, что мы можем понять только верхний уровень линии, неизменный уровень идей, нижний же отрезок относится к изменчивому миру, и о нем мы можем только составить мнение.
Разделенная линия, книга VI «Государства» Платона.
АКАДЕМИЯ ПЛАТОНА
Афинская Академия была основана Платоном около 388 года до н.э. как философская школа. Она была построена в садах Академа, легендарного героя греческой античности, в последний раз возрождалась после смерти Прокпа в 485 году и была окончательно закрыта в 529-м по приказу императора Юстиниана. В стенах Академии разворачивалась основная философская и научная деятельность той эпохи. Там изучали медицину, совершенствовались в риторике и углублялись в астрономию, уделяя особое внимание гелиоцентрической теории. По всем этим дисциплинам разворачивались открытые дискуссии.
Афинская Академия сегодня. Статуи Платона и Сократа.
По этой аналогии изменяющиеся, преходящие объекты (расположенные в нижней части линии) являются предметом doxa (мнения), а непреходящие (в верхней линии) — предметом gnosis (знания). Математические объекты вечны, но занимают промежуточное положение: они не принадлежат ни нижнему, ни верхнему уровню.
Платон устанавливает четкое разделение между способами рассуждения в диалектической речи (свойственной философу) и научной (присущей математику).
Математическое рассуждение использует гипотезы. Умопостижение, присущее философу, идет дальше, чем построение гипотез. Оно заключается не в математических рассуждениях, идущих от гипотез к теоремам, а в философии и ставит вопросы самой математике: что означают гипотезы? Почему они приемлемы? Могут ли они быть другими? Математической деятельности не хватает возвращения от выводов к гипотезам.
О математических фигурах Платон говорит:
«— Но ведь когда они вдобавок пользуются чертежами и делают отсюда выводы, их мысль обращена не на чертеж, а на те фигуры, подобием которых он служит. Выводы свои они делают только для четырехугольника самого по себе и его диагонали, а не для той диагонали, которую они начертили. То же самое относится к произведениям ваяния и живописи: от них может падать тень, и возможны их отражения в воде, но сами они служат лишь образным выражением того, что можно видеть не иначе как мысленным взором. — Ты прав».
Так, когда математик устанавливает истинность общего свойства треугольника (как, например, в предложении 16 первой книги), не важно, каков он — остроугольный, прямоугольный, тупоугольный, — даже если конкретная фигура, на которой он объясняет свои рассуждения, является остроугольным треугольником. Если же свойство, которое он хочет показать, зависит от вида треугольника, тогда он создает по теореме отдельно для каждого конкретного случая, как общая теорема Пифагора, из которой следуют три теоремы: предложение 47 первой книги и предложения 9 и 10 второй книги.