Чтение онлайн

на главную - закладки

Жанры

Трехмерный мир. Евклид. Геометрия
Шрифт:

Книга I, предложение 4. Если два треугольника имеют по две стороны, равные между собой, и по равному углу, содержащемуся между равными прямыми, то они будут иметь и равные основания, и один треугольник будет равен другому.

РИС. 1

Согласно определению 10, пары углов , ; , и , равны. То есть = , = , = . Следовательно, и , и , и , и , и , и являются прямыми углами.

Его доказательство полностью основывается на наложении двух треугольников и на общем понятии 5 и выглядит так: наложим треугольники АВС и А'В'С' один на другой (движение) так, чтобы

угол АВС совпал с углом А'В'С'. Очевидно, что стороны АВ и ВС накладываются на стороны А'В' и В'С. Но через точки А [=А'] и С [=С] проходит только одна прямая (общее понятие 7). Следовательно, треугольники полностью совпадают и, согласно общему понятию 4, они были равны и до их перемещения. Таким образом, треугольники АВС и А'В'С равны. Здесь необходимо уточнить, что непоследовательное использование движения не является ошибкой Евклида.

Единственный способ быть последовательными в этом случае — принять это предложение как постулат, что сделал много веков спустя немецкий математик Давид Гильберт (1862-1943) в своей строгой аксиоматизации геометрии.

РИС. 2

ПРЯМАЯ, КОТОРОЙ НИКОГДА НЕ БЫЛО

Несмотря на определения 2, 3 и 4 из книги I, Евклид ни разу не объяснил, что такое прямая, каковы ее свойства и каким критериям она должна отвечать. Тем не менее он ясно определил, что прямые конечны и их концами являются точки. В действительности Евклид занимался отрезками прямых. Но когда он говорит о равной длине диаметра в определении круга, то использует понятие расстояния. Для прямых его применил позже Архимед в первой аксиоме своего сочинения «О шаре и цилиндре»: «Прямая — кратчайшее расстояние между двумя точками». Как мы увидели на примере предложения 4, Евклид использовал постулаты, не устанавливая их. В доказательстве предложения 1 книги I, проанализированном в главе 2, содержится утверждение, которое мы сейчас подробно рассмотрим:

Проведем прямые СА и СВ из точки пересечения двух окружностей С.

Что может служить гарантией существования точки С по Евклиду? Ничего, кроме рисунка, иллюстрирующего доказательство. Но это неприемлемо, так как рисунок может считаться правильным, только если точка С существует (вспомним изображения невозможных треугольников, использующиеся в доказательствах методом доведения до абсурда).

ИСКРИВЛЕНИЕ ФИГУР

Вопрос искривления возникает в «Началах» неявно. Перед тем как перейти к постулату о параллельных прямых, Евклид устанавливает очень интересный результат:

Книга I, предложение 17. Во всяком треугольнике сумма двух любых углов меньше двух прямых углов.

Чтобы правильно понять эту задачу, мы должны внимательно следовать за рассуждениями Евклида. Он хочет доказать, что сумма углов <BAG и <AGB меньше двух прямых углов. Для этого он переносит угол <EGZ, равный <BAG, к углу <AGB и наблюдает, что их сумма будет меньше, чем сумма <AGB и <AGD. Каким образом он переносит угол? Построив треугольник, который будет содержать его. Как? Согласно следующему доказательству:

1. Он делит сторону AG пополам и получает точку Е (Книга I, предложение 10).

2. Соединяет В и Е (постулат 1) и удваивает этот отрезок (постулат 2 и книга I, предложение 2). Получается точка Z.

3. Соединяет ее с точкой G (постулат 1). Евклид получает два равных треугольника (книга I, предложение 4), так как стороны ZE и EG треугольника ZEG равны сторонам BE и ЕА треугольника БЕЛ соответственно, по построению, а углы <GEZ и <АЕВ противоположны вершине и равны (книга I, предложение 15). Следовательно, оба треугольника равны, а угол <EGZ (который добавляется к углу <AGB) равен углу <BAG, что и требовалось доказать.

Евклид получил такой результат, поскольку точка Z располагается внутри угла <AGD. Но не может ли она располагаться и снаружи этого угла? Ответ на этот вопрос, которым Евклид даже не задавался, отрицательный, так как в его геометрии линии не искривляются. Для Евклида это само собой разумеется, но мы увидим, что эти логические лакуны обесценивают некоторые его доказательства.

В постулате 5 Евклид утверждает, что при некоторых условиях две прямые пересекаются: «Существует точка, принадлежащая им обеим». А в случае с окружностями он принимает это за такой очевидный факт, что не считает нужным говорить об этом. Здесь мы опять сталкиваемся со скрытым постулатом.

Равносторонний треугольник, построенный на отрезке АВ в первом предложении, существует, поскольку построение Евклида верно; но оно зависит от существования точки С. В реальности, в которой этой точки нет, не будет и треугольника. От этого зависят многие из первых доказательств Евклида. Возможность построения в «Началах» зависит от возможности построения точек. Ученый определяет необходимые и достаточные условия, при которых две прямые пересекаются, и правильно обозначает точки, появляющиеся таким образом. Но при этом он не говорит, при каких условиях пересекаются прямая и окружность, и следовательно, точки, получающиеся в местах их пересечения, как бы не существуют.

Я прихожу все более к убеждению, что необходимость нашей геометрии не может быть доказана, по крайней мере человеческим рассудком и для человеческого рассудка.

Карл Фридрих Гаусс

Хотя он мог бы сделать это очень просто, достаточно было уточнить, например в случае с окружностями, следующее.

Постулат о пересечении двух окружностей. Если расстояние между центрами двух окружностей меньше половины суммы их диаметров [то есть меньше суммы радиусов этих окружностей], то эти окружности пересекаются в двух точках.

Аналогичным образом можно определить условие, позволяющее выявить существование двух точек, образованных в результате пересечения окружности и прямой: прямая и окружность пересекаются [в двух точках], если перпендикуляр, идущий от центра окружности к прямой, меньше ее радиуса. Но Евклид ничего не говорит по этому поводу.

ПОСТУЛАТ О ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ

Все ученые, занимающиеся «Началами», согласны в том, что их структура и, в частности, постулат 5 (мы будем кратко обозначать его П5) принадлежат самому Евклиду. Это знаменитый постулат о параллельных прямых, который в формулировке Евклида гласит, что «в определенных условиях две прямые неизбежно пересекутся». Евклид впервые применяет его только в предложении 29 первой книги. Та часть геометрии, которая не зависит от этого постулата, получила название абсолютной геометрии. Дословно в пятом постулате говорится следующее.

Постулат 5 (П5). Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные эти две прямые неограниченно встретятся с той стороны, где углы, меньшие двух прямых.

Обычно постулат о параллельных прямых изучается не в этой оригинальной формулировке, а в том виде, в котором его изложил шотландский математик Джон Плейфэр (1748— 1819), профессор математики, а впоследствии и философии в Эдинбургском университете.

Поделиться:
Популярные книги

Диверсант

Вайс Александр
2. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Диверсант

Измена. Осколки чувств

Верди Алиса
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Осколки чувств

Солдат Империи

Земляной Андрей Борисович
1. Страж
Фантастика:
попаданцы
альтернативная история
6.67
рейтинг книги
Солдат Империи

Ваше Сиятельство 4т

Моури Эрли
4. Ваше Сиятельство
Любовные романы:
эро литература
5.00
рейтинг книги
Ваше Сиятельство 4т

Идеальный мир для Социопата 3

Сапфир Олег
3. Социопат
Фантастика:
боевая фантастика
6.17
рейтинг книги
Идеальный мир для Социопата 3

Темный Патриарх Светлого Рода

Лисицин Евгений
1. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода

Рождение победителя

Каменистый Артем
3. Девятый
Фантастика:
фэнтези
альтернативная история
9.07
рейтинг книги
Рождение победителя

Последний Паладин. Том 6

Саваровский Роман
6. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 6

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Курсант: Назад в СССР 11

Дамиров Рафаэль
11. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 11

Замуж второй раз, или Ещё посмотрим, кто из нас попал!

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Замуж второй раз, или Ещё посмотрим, кто из нас попал!

Мне нужна жена

Юнина Наталья
Любовные романы:
современные любовные романы
6.88
рейтинг книги
Мне нужна жена

Темный Патриарх Светлого Рода 2

Лисицин Евгений
2. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 2

Большие дела

Ромов Дмитрий
7. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Большие дела