Веселые задачи. Две сотни головоломок
Шрифт:
Рис. 43. Куда девался исчезнувший гость?
49. Задача сводится в сущности к тому, чтобы разделить 10 кг масла на две равные по весу части. Положите на каждую чашку по бумажному листу и накладывайте на них масло до тех пор, пока 10 кг не распределятся поровну между ними. Ясно, что теперь на каждой чашке ровно 5 кг — если только весы правильны.
Рис. 44.
50. И на неверных весах можно достичь того же, но более сложным путем. Сначала надо разделить десять килограммов масла на две части так, чтобы они были приблизительно (на глаз) равны. Затем берут одну из этих частей, кладут на чашку весов; на другую же чашку накладывают камешков или чего угодно до тех пор, пока чашки не будут уравновешены. Тогда снимают с чашки первую часть масла и вместо нее кладут вторую. Если окажется при этом, что чашки весов остаются на прежнем месте, то, значит, обе части масла равны, так как заменяют одна другую по весу. В таком случае, разумеется, каждая из них весит ровно 5 кг.
Рис. 45.
Если же чашки не будут на одном уровне, то надо от одного куска переложить немного масла на другой и повторять это до тех пор, пока обе порции не будут вполне заменять друг друга на одной и той же чашке весов.
Подобным же образом можно действовать и при неверных пружинных весах: перекладывать масло из одного пакета в другой до тех пор, пока оба пакета не будут оттягивать указатель весов до одной и той же черты (хотя эта черта, может, и не стояла против 5 кг).
Искусное разрезание и сшивание
Семь раз отмерь — один раз отрежь.
51. Флаг морских разбойников
Вы видите здесь флаг морских разбойников (рис. 46). Двенадцать продольных полос на нем обозначают, что в плену у пиратов находятся 12 человек. Когда удается захватить новых пленных, пираты подшивают к флагу соответствующее число новых полос. Напротив, при утрате каждого пленного они убирают одну полосу.
Рис. 46. Пиратский флаг.
На этот раз пираты потеряли двух пленных и, следовательно, должны перешить флаг так, чтобы полос было не 12, а 10.
Можете ли вы указать простой способ разрезать флаг на две такие части, чтобы после сшивания их получился флаг с 10 полосами? При этом не должно пропасть ни клочка материи и флаг должен сохранить прямоугольную форму.
52. Красный крест
У сестры милосердия имелся квадратный кусок красной материи, из которого нужно было сшить крест (рис. 47). Она хотела так перешить квадрат, чтобы использовать всю материю. После долгих поисков ей удалось разрезать квадрат на 4 куска, из которых она и сшила крест. В нем было всего два шва, каждый в виде прямой линии. Попробуйте сделать то же самое из квадратного куска бумаги.
Рис. 47. Красный крест из красного квадрата.
53. Из лоскутков
У другой сестры милосердия были такие обрезки красной материи, какие изображены на рис. 48.
Рис. 48. Красный крест из лоскутьев.
Сестра ухитрилась, не разрезав этих лоскутьев, сшить из них крест. Каким образом?
54. Два креста из одного
У третьей сестры милосердия имелся готовый красный крест из материи, но он был чересчур велик, и она вырезала из него другой, поменьше.
Вырезав крест, сестра собрала обрезки — их оказалось всего 4 — и решила, что из них можно, не разрезая ни одного лоскутка, сшить еще один крест и притом точно такой же величины, как первый.
Рис. 49. Два красных креста из одного большого.
А значит, вместо одного креста у нее оказалось два поменьше одинаковой величины — один цельный, другой составной.
Можете ли вы показать, как сестра это сделала?
55. Лунный серп
Фигуру лунного серпа (рис. 50) требуется разделить на 6 частей, проведя всего только две прямые линии.
Как это сделать?
Рис. 50. Лунный серп.
56. Деление запятой
Вы видите здесь широкую «запятую» (рис. 51) — Она построена очень просто: на прямой АВ описан полукруг, а затем на каждой половине АВ описаны полукруги — один вправо, другой влево.
Задача состоит в том, чтобы разрезать запятую одной кривой линией на две совершенно одинаковые части.
Рис. 51. Деление «запятой» на две равные (по площади) части.
Фигура эта интересна еще и тем, что из двух таких фигур можно составить круг. Каким образом?
57. Развернуть куб
Если вы разрежете картонный куб вдоль ребер так, чтобы его можно было разогнуть и положить всеми 6-ю квадратами на стол, то получите фигуру вроде трех следующих:
Рис. 52. Куб и его развертки.
Любопытно сосчитать: сколько различных фигур можно получить таким путем? Другими словами, сколькими способами можно развернуть куб на плоскости? Предупреждаю нетерпеливого читателя, что различных фигур не менее двенадцати. Различными условимся считать две развертки, которые не совпадают при наложении друг с другом или одной из них с ее зеркальным отражением.
58. Составить квадрат