«Витязь» в Индийском океане
Шрифт:
Возникновение резкого кислородного минимума на нескольких десятках или сотнях метров под поверхностью моря в открытом океаническом бассейне (в отличие от замкнутого Черного моря) — факт совершенно необычный, парадоксальный. «Причины этого кислородного дефицита, — пишет известный немецкий океанограф Шотт, — еще не ясны», несмотря на ряд исследований, в частности на обстоятельные работы Сеймура Сьювелла, члена английской экспедиции на судне «Мабахис».
То, что мы знали об Аравийском море, подтвердилось и в нашем рейсе. Начиная с 6° северной широты и дальше на север и на восток наши гидрохимики находили очень бедное содержание кислорода в подповерхностных слоях моря. На этой станции бедный кислородом слой (менее 1 мл на литр воды) начинается на 600 метрах и доходит до 1000-метрового горизонта. На 8° северной широты кислородный
Резкий кислородный дефицит в подповерхностных слоях был обнаружен почти по всему Аравийскому морю, а также в Красном море. Следующий рейс «Витязя» подтвердил все эти данные и обнаружил во многих местах накопление сероводорода в морской воде. Эти места, конечно, лишены жизни.
Хорошо известно, что обеднение морской воды кислородом может наступить там, где идет интенсивное потребление его, с одной стороны, и где затруднена доставка его, с другой. Вода обогащается кислородом на поверхности, приближаясь к равновесию с атмосферой. В верхних, освещенных слоях моря кислород выделяется и планктонными водорослями в процессе фотосинтеза. Вертикальное перемешивание воды, а также течения, идущие на глубину, разносят кислород из верхних слоев по всей толще вод, вплоть до самого дна. Благодаря этим движениям водных масс даже на самых больших глубинах океана имеется кислород и может существовать разнообразная фауна.
Работы гидрологов и гидрохимиков «Витязя» пролили добавочный свет на происхождение кислородного дефицита в Аравийском море.
Самая существенная особенность гидрологического режима Аравийского моря — резко выраженный скачок плотности воды, или термоклин, связанный со столь же резким температурным скачком. На протяжении каких-нибудь 25–50 метров (например, между 100 и 125 метрами) температура воды может упасть на 6–8°! Резкий скачок плотности делает невозможным вертикальное перемешивание. Слои воды ниже скачка не имеют контакта с поверхностными водами и ведут обособленное существование. Глубины Аравийского моря бедны кислородом, а в слой воды ниже скачка опускается много органического материала, живого и мертвого, так как верхние, поверхностные слои очень богаты жизнью, планктоном. Поэтому в подповерхностных слоях идет интенсивное потребление кислорода как в процессе дыхания организмов, так и при окислении органических веществ, в основном при участии бактерий, — потребление, не компенсируемое доставкой кислорода. Все это создает условия для возникновения кислородного дефицита в подповерхностных слоях.
Верхняя граница бедного кислородом слоя выражена резко и совпадает с нижней границей слоя скачка плотности. По мере удаления от побережья Индостана мощность слоя кислородного минимума увеличивается, а верхняя граница его опускается, следуя за опусканием нижней границы слоя скачка.
Таким образом, ключом к пониманию особенностей кислородного режима Аравийского моря служит резкий скачок плотности. Отчего же возникает здесь этот скачок плотности? Ответ на этот вопрос дает знакомство с динамикой вод. В период зимнего муссона (ноябрь — март) устойчивые по силе и направлению ветры дуют на всем побережье западного Индостана. Они приводят к возникновению сильных сгонных течений, переносящих опресненные прибрежные воды в открытое море, в юго-западном направлении. Этот сгон ведет к подъему бедных кислородом и богатых биогенными элементами более холодных, глубинных вод — для компенсации оттока.
В отдельных местах побережья Индии глубинные воды достигают зоны приливного перемешивания и выходят на поверхность, где обогащаются кислородом. Тут создаются особо благоприятные условия для бурного развития фито-и зоопланктона. Эти районы являются настоящими пастбищами для рыб и хорошо известны рыбакам.
Богатые кислородом и биогенными элементами поверхностные воды, изобилующие жизнью, переносятся поверхностным муссонным течением далеко в открытое море. Живой и отмирающий планктон постепенно погружается в более глубокие поверхностные слои, ниже слоя скачка, отрезанные от контакта с поверхностью моря. Это и приводит к прогрессирующему кислородному истощению.
К апрелю зимний муссон кончается, устанавливается
Другой причиной, вызывающей гибель рыб и падение рыболовства, считают вспышки развития некоторых жгутиковых водорослей (флагеллят), например перидинеи Noctiluca ночесветки, а также сине-зеленой водоросли Trichodesmium, выделяющих ядовитые вещества. Выделение токсических веществ одноклеточными организмами описано для разных морей и для пресных вод. Планктонолог доктор Прасад, наш индийский товарищ по плаванию, рассказывает, что флягеллята, вызывающая гибель рыб у западных берегов Индии, это Hornellia marina. Вспышки развития этой жгутиковой совпадают с усиленным подъемом богатых питательными солями глубинных вод у берегов.
Таким образом, Аравийское море — море контрастов: исключительное богатство планктона, а часто и рыбы в верхних слоях — и лишенные жизни бедные кислородом более глубокие подповерхностные слои.
Наши специалисты по планктону В. Г. Богоров и М. Е. Виноградов отмечают, что Аравийское море и Яванский район выделяются наибольшей продуктивностью своего поверхностного слоя. В этих районах количество планктона в верхнем 100-метровом слое равняется в среднем 0,17—0,18 кубического сантиметра на 1 кубический метр воды, тогда как в других местах открытого океана оно не превышает 0,05 — 0,1 кубического сантиметра на 1 кубический метр. Более высокая продуктивность поверхностного слоя означает, что здесь может найти себе корм и большее количество рыбы, и, следовательно, большее развитие может получить рыбный промысел. Поэтому изучение сравнительной продуктивности моря очень интересует народное хозяйство прилежащих стран.
В силу этого представляет интерес несколько подробнее коснуться вопроса о продуктивности моря. Продуктивность моря, как и урожайность поля, измеряется количеством пищи, которая может быть получена с единицы площади.
Животные, как известно, не могут жить на минеральном питании, они должны получать органическое вещество — белки, жиры, углеводы. В отличие от животных растения сами превращают неорганическое вещество — воду, углекислоту, различные соли — в органическое, создают углеводы, жиры и белки. Превращение неорганического вещества в органическое требует затраты энергии. Эта энергия доставляется лучами солнца. Солнечный свет поглощается зеленым пигментом растений — хлорофиллом. Процесс построения органического вещества из углекислоты и воды зелеными растениями с использованием энергии света называется фотосинтезом.
Все животные, как растительноядные, так и питающиеся растительноядными, живут за счет растений. Это общий закон жизни как для земли, так и для моря. И вся фауна рыб океана живет в конечном итоге за счет растений, водорослей. Жизненное значение тут имеет не та узкая полоса морских водорослей, которая окаймляет берега материков и островов, а бесчисленные миллиарды микроскопических планктонных водорослей — фитопланктона, населяющие верхние слои воды и обеспечивающие существование животного мира повсюду в океане.
Так как вода поглощает и рассеивает свет, то фотосинтез может идти только в тонком верхнем слое океана, приблизительно в верхних 100 метрах. Глубина этого слоя зависит от интенсивности падающего света, от угла падения лучей, от прозрачности воды и других условий. В этом верхнем фотосинтетическом слое создается все органическое вещество, на котором зиждется жизнь всех морских животных, вплоть до обитателей самых болыимх глубин океана.
Количественная оценка величины продукции органического вещества планктонными водорослями давно интересует ученых. Для измерения этой величины было разработано несколько методов. До недавнего времени наибольшее значение имел метод, основанный на том, что растения, создавая углеводы (сахар, клетчатку) из углекислоты и воды, освобождают при этом эквивалентное количество кислорода. По величине прироста кислорода в пробах воды можно рассчитать образование органического вещества на единицу объема воды или, как говорят, величину первичной продукции.