Волшебный двурог
Шрифт:
— Да-да… — сказал несколько растерянно Илюша.
— Ну! — произнес Мнимий Радиксович, видя его затруднение. — Ну, например, три в квадрате плюс четыре в квадрате — это будет пять в квадрате. Девять плюс шестнадцать будет двадцать пять.
— А! — вспомнил Илюша. — Это по пифагоровой теореме! Сумма квадратов катетов равняется квадрату гипотенузы в целых числах. Так ведь это очень просто!
— Разумеется, — отвечал Мнимий, — это несложно. Но если сумма двух квадратов может быть квадратом, то уж сумма двух кубов не может быть кубом. И вообще ни одна степень, кроме второй, не годится. Это еще никому не удавалось опровергнуть. Наоборот, чем дальше идут наши работы, тем больше мы убеждаемся, что это справедливо. Но дело в том, что надо доказать, что это так. Доказать
Комплексный человечек перешел к другой формуле.
— 86 —
— Ну вот, позвольте теперь дать вам некоторые указания о{5} пифагоровых числах. То есть о сумме квадратов. Начнем с того, что мы будем рассматривать всегда три таких числа, чтобы никакие два из них не имели общих делителей. Нам ведь нет смысла рассматривать равенства, вроде вот такого:
62 + 82 = 102,
потому что такое равенство можно сократить на 22, и тогда мы придем к тому, с чего начали, то есть к равенству
32 + 42 = 52.
А с другой стороны, поскольку это сумма, то если какая-нибудь пара чисел делится на некоторое число, то и третье на него делится. Следовательно, нам нет смысла рассматривать такие случаи. Ясно?
— Ясно, — ответил Илюша.
— Прекрасно, — отвечал терпеливый лектор. — Теперь далее. Вы видите, что если взять «три» и «четыре», то одно из этих чисел четное, а другое — нечетное. Может ли быть иначе? Очевидно, нет. Потому что если бы оба эти числа были четные, то у них был бы общий делитель «два», а мы только что выяснили, что это нам не подходит. Теперь: могут ли оба эти числа быть нечетными? Нет, потому что тогда сумма их квадратов должна была бы быть четным числом. Это очень просто проверить. Возьмем два нечетных числа, возведем их порознь в квадрат, а эти квадраты сложим:
(2m + 1) 2 + (2n + 1) 2 = 4m2 + 4m + 1 + 4n2 + 4n + 1 = 4(m2 + n2) + 4(m + n) + 2 = 2[2(m2 + n2 + 2(m+ n) + 1].
Ясно, что наша сумма есть четное число. Однако если квадрат какого-нибудь числа есть число четное, то само число и подавно четное. Если же это так, то наша сумма должна делиться без остатка на четыре, ибо всякое четное число можно написать в виде 2n, откуда квадрат его есть 4n2, и он, очевидно, делится на четыре. Попробуем теперь разделить на четыре нашу сумму квадратов двух нечетных чисел:
[4(m2 + n2) + 4(m+ n) + 2]/4 = (m2 + n2) + (m + n) + 2/4.
Ясно, что эта сумма на четыре не делится, и мы получаем и остатке «два». Следовательно, наше предположение ведет к противоречию. И два числа в правой части равенства не могут
— 87 —
быть оба нечетными. А так как мы видели, что они не могут быть и оба четными, то ясно, что одно из них четное, а другое нечетное. Вы с этим согласны?
— Согласен, — отвечал внимательно слушавший Илюша.
— Теперь очевидно, что третье число должно быть также нечетным, ибо квадрат четного числа есть четное число, а квадрат нечетного — нечетное. Ясно, что их сумма опять будет числом нечетным. Положим теперь для определенности, что z (сумма) будет нечетным числом, х (первое число) тоже нечетным, а у (второе) — четным. Тогда можно написать, что
y2 = z2 — x2 = (z — x)(z + x)
Отсюда ясно, что выражения (z — х) и (z + x) представляют собой снова четные числа, ибо они суть разности двух нечетных чисел. Следовательно, можно положить:
z + х = 2m; z — х = 2n,
а отсюда
z = m + n; х = m — n.
При этом m и n не имеют общих делителей, и они, как у нас говорят, разной четности, то есть одно из них четное число, а другое нечетное. Но если все это так, то тогда можно написать:
у2 = (z + x) (z — x) = 4mn
и отметить, что, очевидно, m и n суть квадраты. Ибо если бы m содержало какой-нибудь простой делитель в нечетной степени, то недостающий делитель должен был бы входить в n, а в n его не может быть, ибо m и n не имеют общих делителей. Но если это справедливо, то можно написать, что