Чтение онлайн

на главную

Жанры

Шрифт:

— Я, — сказал Коникос, — двигаюсь в пространстве, а планета моя не двигается. Ты видишь, что делается с тенью ее?

— Вижу, — отвечал Илюша.

— Теперь пусть наш слабо светящийся шарик идет вперед, параллельно стене.

Слабо светящийся шарик двинулся медленно вперед, а Коникос по-прежнему продолжал ходить из стороны в сторону.

Теперь тень светящейся точки сперва пошла назад, потом повернула и бросилась вперед, но спустя некоторое время снова повернула назад, а потом опять бросилась вперед.

— Ну, теперь я понял, — сказал Илюша.

— Надо еще не забывать о том, — добавил Радикс, — что наука о звездном небе с самых древних времен была необходима человеку в его путешествиях. Мореход в открытом море определяет

свое положение по звездам. Так же поступает и кочевник в пустыне, где тоже нет ориентиров. Знания о звездах накапливаются и постепенно превращаются в науку. Наш русский путешественник-естествоиспытатель В. К. Арсеньев рассказывает [18] , как зимой в тундре, среди необозримых снегов он кочевал с одним племенем тунгусов. Однажды ему сказали, что дня через два они сойдутся с другим кочующим народом. Наконец кочевники выбрали себе какое-то место, которое, по мнению Арсеньева, ничем не отличалось от других.

18

В К. Арсеньев. Встреча в тайге. Сборник рассказов. М., Детгиз, 1963. Рассказ «В тундре».

К вечеру старики стали наблюдать небо, но жаловались, что густая облачность не дает рассмотреть то, что им надо, и из-за этого они не совсем уверены, так ли выбрали место стоянки, ибо их родичи придут на определенное место. Прошло

— 262 —

два дня, и утром, проснувшись, Арсеньев с изумлением обнаружил, что другие кочевники пришли на то же место. A в дальнейшем ему неохотно и не очень толково объяснили, что старики определили место по звездам, причем очевидно, что старики в обеих группах кочевников руководствовались одними и теми же признаками. Значит, астрономии человека учила сама жизненная необходимость!

— Ну теперь, — сказал Асимптотос, — вернемся еще к нашему сферическому треугольнику. Лучше сказать — к геометрии на сфере. Выясним, какие линии играют на сферической поверхности роль прямых. Архимед в сочинении «О шаре и цилиндре» вводит допущение, что прямая есть кратчайшее расстояние между двумя точками, откуда мы приходим к заключению, что «прямой» на сфере будет дуга большого круга, то есть такого круга, который получится при сечении сферы плоскостью, проходящей через центр сферы. Если это так, то очевидно, что на сфере не может быть параллельных «прямых», ибо две «прямые» обязательно пересекаются в двух точках (как меридианы на полюсах). Площадь треугольника на сфере тем больше, чем более превышает сумма его углов плоскостную меру, то есть два прямых угла. Что касается до «прямых» на сфере, то это очень просто можно проверить на глобусе при помощи резиновой нитки. Попробуй-ка на глобусе поехать по тридцать девятой параллели из Лиссабона в Нью-Йорк или из Иокогамы в Сан-Франциско.

— Обязательно попробую! — сказал Илюша.

— И хорошо сделаешь, — отвечал Радикс. — Знай, что это обстоятельство крайне затрудняет черчение географических карт на плоскости и что над разрешением вопроса о том, как начертить карту, чтобы искажение масштабов было наименьшим, работал крупнейший русский математик Пафнутий Львович Чебышев, живший в девятнадцатом веке, а также и ученики его. Я тебя вот еще о чем спрошу: если мы начертим какую-нибудь геометрическую фигуру на плоском листе бумаги, а потом изогнем этот кусок бумаги как-нибудь, то что сделается с теми линиями, которые у нас на плоскости были прямыми?

— Они уже не будут прямыми, — отвечал Илюша.

— Правильно, — согласился Коникос. — Но кратчайшими расстояниями среди линий, соединяющих две точки на поверхности и целиком лежащих на поверхности, они останутся. Такие линии называются геодезическими. Геодезическими на сфере, очевидно, являются большие круги.

— Самое интересное, — добавил Радикс, — это то, что на сфере совсем не может быть параллельных

линий.

— Н-да, разумеется… — задумчиво и неопределенно про-

— 263 —

тянул Асимптотос. — Однако ведь у нас есть еще один необычайнейший треугольник. Сумма его углов не больше 2d и не равна 2d, а меньше двух прямых углов.

— Это уж что-то совсем непонятное! — сокрушенно заявил Илюша.

— Разумеется, — промолвил Радикс, — геометрия, в которой можно построить такой треугольник, есть тоже не-евклидова геометрия. Ее открыл и разработал великий русский геометр Николай Иванович Лобачевский, профессор Казанского университета. Он жил с тысяча семьсот девяносто третьего года по тысяча восемьсот пятьдесят шестой год. Его труды, опубликованные в тридцатых годах девятнадцатого столетия, были настолько поразительны и вели к таким необычным и неожиданным последствиям, что лишь немногие его современники могли понять и оценить эти труды.

— Надо тебе сказать, — продолжал вслед за другом Коникос, — что теорему Евклида, которая гласит, что сумма углов плоского треугольника равна двум прямым, можно вывести на основании одного из двух положений:

1) из одной точки можно провести только одну параллельную линию к данной линии или 2) всегда можно построить фигуру, подобную данной, но больше ее.

Таким образом, все эти положения тесно связаны друг с другом, так что если справедливо одно из них, то оправдываются и два других.

— Как это? — спросил Илюша.

— Слушай дальше: положение, или постулат, о параллельных принимается у Евклида за аксиому, однако, так как оно не кажется столь же очевидным и столь же простым, как другие аксиомы Евклида, то на протяжении долгих веков не прекращались попытки доказать этот постулат так, как доказывают теорему. Между прочим, одна из этих попыток — разумеется, не более удачная, чем все остальные — принадлежит автору «Альмагеста», Птолемею, который был незаурядным математиком. Однако теперь мы знаем, что большинство этих попыток свелось к тому, что допущение Евклида о параллельных бессознательно заменялось либо допущением о возможности построить подобную фигуру, либо допущением о том, что сумма углов треугольника есть величина постоянная и равна двум прямым. Существует, правда, кроме этих, еще несколько равнозначных положений, но их уж я касаться не буду. Наконец, все эти работы повели к тому, что геометры заметили (после работ Лобачевского) связь этих положений друг с другом и убедились, что «доказать» этот постулат Евклида невозможно. Однако этот постулат — или одно из перечисленных мной допущений — является необходимым, без него нельзя построить евклидову геометрию. До Лобачевского очень

— 264 —

многие полагали, что никакой другой геометрии, кроме евклидовой, не только нет, но и не может существовать. Мнение это было общепринятым. Иные утверждали, что евклидова геометрия есть наша «естественная» геометрия, которую человек всасывает чуть ли не с молоком матери. Но крупнейший немецкий математик Карл Гаусс на это возразил: «Мы не имеем права путать то, что нам кажется странным, с тем, что и на самом деле невозможно». Лобачевского на его труды натолкнули такие соображения: чтобы убедиться в том, что нет возможности доказать постулат Евклида о параллельных, следует попробовать построить геометрию, где бы этот важный постулат был вообще отброшен. Ход размышлений Лобачевского ты легко можешь усвоить, вспомнив, как доказываются геометрические теоремы «от противного». Мы, вместо того чтобы искать прямое доказательство, делаем противное допущение, и тогда, если в конце наших рассуждений мы сталкиваемся с противоречием, это опровергает наше противное допущение, тем самым подтверждая и доказывая то прямое положение, доказать которое нам и было нужно. Если постулат о параллельных необходим, то (так рассуждал наш великий геометр), мы, отбросив его, не сможем получить строгой системы геометрии и неминуемо придем к логическим противоречиям.

Поделиться:
Популярные книги

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Я снова не князь! Книга XVII

Дрейк Сириус
17. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я снова не князь! Книга XVII

Метка драконов. Княжеский отбор

Максименко Анастасия
Фантастика:
фэнтези
5.50
рейтинг книги
Метка драконов. Княжеский отбор

Авиатор: назад в СССР 11

Дорин Михаил
11. Покоряя небо
Фантастика:
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 11

На границе империй. Том 7. Часть 5

INDIGO
11. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 7. Часть 5

Темный охотник 6

Розальев Андрей
6. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный охотник 6

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Все еще не Герой!. Том 2

Довыдовский Кирилл Сергеевич
2. Путешествие Героя
Фантастика:
боевая фантастика
юмористическое фэнтези
городское фэнтези
рпг
5.00
рейтинг книги
Все еще не Герой!. Том 2

Довлатов. Сонный лекарь 3

Голд Джон
3. Не вывожу
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 3

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Ваше Сиятельство 8

Моури Эрли
8. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 8

Чемпион

Демиров Леонид
3. Мания крафта
Фантастика:
фэнтези
рпг
5.38
рейтинг книги
Чемпион